Machine learning (ML) recourse techniques are increasingly used in high-stakes domains, providing end users with actions to alter ML predictions, but they assume ML developers understand what input variables can be changed. However, a recourse plan's actionability is subjective and unlikely to match developers' expectations completely. We present GAM Coach, a novel open-source system that adapts integer linear programming to generate customizable counterfactual explanations for Generalized Additive Models (GAMs), and leverages interactive visualizations to enable end users to iteratively generate recourse plans meeting their needs. A quantitative user study with 41 participants shows our tool is usable and useful, and users prefer personalized recourse plans over generic plans. Through a log analysis, we explore how users discover satisfactory recourse plans, and provide empirical evidence that transparency can lead to more opportunities for everyday users to discover counterintuitive patterns in ML models. GAM Coach is available at: https://poloclub.github.io/gam-coach/.
翻译:机器学习(ML)追索技术越来越多地用于高占用域,为终端用户提供了改变 ML 预测的行动,但他们认为ML 开发商理解了哪些投入变量可以改变。然而,追索计划的可操作性是主观的,不可能完全满足开发商的期望。我们介绍了GAM Control,这是一个全新的开放源码系统,它调整了整数线性编程,为通用Additive 模型生成可定制的反事实解释(GAMs),并利用互动式可视化手段使终端用户能够迭代生成符合其需要的追索计划。由41名用户进行的数量化用户研究表明,我们的工具是可用和有用的,用户更喜欢个性化的追索计划,而不是通用计划。我们通过对日志进行分析,探索用户如何发现令人满意的追索计划,并提供经验证据,证明透明度可使日常用户有更多机会在ML 模型中发现反直觉模式。 GAM 教练可以在https://poloclub.github.io/gam-coach/上找到。</s>