Inferring unknown constraints is a challenging and crucial problem in many robotics applications. When only expert demonstrations are available, it becomes essential to infer the unknown domain constraints to deploy additional agents effectively. In this work, we propose an approach to infer affine constraints in control tasks after observing expert demonstrations. We formulate the constraint inference problem as an inverse optimization problem, and we propose an alternating optimization scheme that infers the unknown constraints by minimizing a KKT residual objective. We demonstrate the effectiveness of our method in a number of simulations, and show that our method can infer less conservative constraints than a recent baseline method while maintaining comparable safety guarantees.
翻译:-
推断未知约束是许多机器人应用中的一项具有挑战性和关键的问题。当只有专家演示可用时,推断未知的领域约束变得至关重要,以有效地部署其他代理。在这项工作中,我们提出了一种方法,通过观察专家演示来推断控制任务中的仿射约束。我们将约束推断问题形式化为逆优化问题,并提出了一种交替优化方案,通过最小化KKT残差目标来推断未知约束。我们在许多模拟中展示了我们方法的有效性,并显示出我们的方法可以推断出不那么保守的约束,同时仍然保持可比较的安全保障。