For many, Graphics Processing Units (GPUs) provides a source of reliable computing power. Recently, Nvidia introduced its 9th generation HPC-grade GPUs, the Ampere 100, claiming significant performance improvements over previous generations, particularly for AI-workloads, as well as introducing new architectural features such as asynchronous data movement. But how well does the A100 perform on non-AI benchmarks, and can we expect the A100 to deliver the application improvements we have grown used to with previous GPU generations? In this paper, we benchmark the A100 GPU and compare it to four previous generations of GPUs, with particular focus on empirically quantifying our derived performance expectations, and -- should those expectations be undelivered -- investigate whether the introduced data-movement features can offset any eventual loss in performance? We find that the A100 delivers less performance increase than previous generations for the well-known Rodinia benchmark suite; we show that some of these performance anomalies can be remedied through clever use of the new data-movement features, which we microbenchmark and demonstrate where (and more importantly, how) they should be used.


翻译:对于许多人来说,图形处理单位(GPUs)提供了可靠的计算能力来源。 最近,Nvidia引入了第九代HPC级GPUs,即Ampere 100,声称在前几代人中业绩显著提高,特别是AI-work负荷,以及引入新的建筑特征,例如类似同步的数据移动。但是,A100在非AI基准上的表现如何?我们能否期待A100提供我们与前几代GPU人一起形成的应用改进?在本文中,我们将A100GPU作为基准,并将其与前四代GPU进行对比,特别侧重于实证性地量化我们获得的绩效预期,以及 -- -- 如果这些期望没有得到实现 -- -- 调查引入的数据移动特征是否能抵消任何最终的绩效损失?我们发现,对于众所周知的Rodinia基准套件来说,A100比前几代的绩效提高得少;我们表明,通过明智地使用新的数据移动特征可以纠正其中的一些性异常现象,我们微缩记并展示(更重要的是)应在何处使用这些特征。

0
下载
关闭预览

相关内容

【2020新书】傅里叶变换的离散代数,296页pdf
专知会员服务
113+阅读 · 2020年11月2日
专知会员服务
44+阅读 · 2020年10月31日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
AI/ML/DNN硬件加速设计怎么入门?
StarryHeavensAbove
10+阅读 · 2018年12月4日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
MLPerf Tiny Benchmark
Arxiv
1+阅读 · 2021年8月4日
Arxiv
0+阅读 · 2021年8月1日
Revealing the Dark Secrets of BERT
Arxiv
4+阅读 · 2019年9月11日
VIP会员
相关VIP内容
【2020新书】傅里叶变换的离散代数,296页pdf
专知会员服务
113+阅读 · 2020年11月2日
专知会员服务
44+阅读 · 2020年10月31日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
AI/ML/DNN硬件加速设计怎么入门?
StarryHeavensAbove
10+阅读 · 2018年12月4日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员