This paper surveys visualization and interaction techniques for geospatial networks from a total of 95 papers. Geospatial networks are graphs where nodes and links can be associated with geographic locations. Examples can include social networks, trade and migration, as well as traffic and transport networks. Visualizing geospatial networks poses numerous challenges around the integration of both network and geographical information as well as additional information such as node and link attributes, time, and uncertainty. Our overview analyzes existing techniques along four dimensions: i) the representation of geographical information, ii) the representation of network information, iii) the visual integration of both, and iv) the use of interaction. These four dimensions allow us to discuss techniques with respect to the trade-offs they make between showing information across all these dimensions and how they solve the problem of showing as much information as necessary while maintaining readability of the visualization. https://geonetworks.github.io.


翻译:本文从总共95篇论文中调查地理空间网络的可视化和互动技术;地理空间网络是可与地理位置相联系的节点和链接的图表;举例可包括社交网络、贸易和移徙以及交通和运输网络;地理空间网络的可视化围绕网络和地理信息的整合以及节点和链接属性、时间和不确定性等补充信息等额外信息提出了诸多挑战;我们的概览从四个方面分析了现有技术:(一) 地理信息的表述情况,(二) 网络信息的表述情况,(三) 网络信息的视觉整合,以及(四) 互动的利用情况。这四个方面使我们能够讨论在展示所有层面的信息和如何解决在保持可视化的同时尽可能多显示信息的问题之间取舍的技术。https://geonetwos.github.io。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
专知会员服务
84+阅读 · 2020年12月5日
专知会员服务
109+阅读 · 2020年3月12日
【深度学习视频分析/多模态学习资源大列表】
专知会员服务
91+阅读 · 2019年10月16日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
CCF推荐 | 国际会议信息10条
Call4Papers
8+阅读 · 2019年5月27日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
Arxiv
20+阅读 · 2019年11月23日
Generative Adversarial Networks: A Survey and Taxonomy
Arxiv
4+阅读 · 2018年2月19日
VIP会员
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
CCF推荐 | 国际会议信息10条
Call4Papers
8+阅读 · 2019年5月27日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
Top
微信扫码咨询专知VIP会员