A foundational question in quantum computational complexity asks how much more useful a quantum state can be in a given task than a comparable, classical string. Aaronson and Kuperberg showed such a separation in the presence of a quantum oracle, a black box unitary callable during quantum computation. Their quantum oracle responds to a random, marked, quantum state, which is intractable to specify classically. We constrain the marked state in ways that make it easy to specify classically while retaining separations in task complexity. Our method replaces query by state complexity. Furthermore, assuming a widely believed separation between the difficulty of creating a random, complex state and creating a specified state, we propose an experimental demonstration of quantum witness advantage on near-term, distributed quantum computers. Finally, using the fact that a standard, classically defined oracle may enable a quantum algorithm to prepare an otherwise hard state in polynomial steps, we observe quantum-classical oracle separation in heavy output sampling.


翻译:量子计算复杂度中的基本问题询问量子状态在一项特定任务中比一个可比较的古典字符串更有用。 Aaronson 和 Kuperberg 在量子计算过程中可以使用的量子甲骨文(一个黑匣子,一个在量子计算中可以使用的统一线)中展示了这种分离。它们的量子甲骨文对一个随机的、标记的量子状态作出反应,而该质子状态在典型地难以指定。我们限制这个标志性状态的方式使得它容易以传统方式进行指定,同时保留任务复杂性中的分离。我们的方法用国家复杂性来取代查询。此外,假设在创建随机、复杂状态和创建特定状态的困难之间有广泛信仰的区分,我们提议在近期、分布的量子计算机上实验性地展示量子证人优势。 最后,我们利用一个标准,由传统定义的量子算法,可以使量子算法能够在多式步骤中准备一个本来硬的量子状态,我们在重输出抽样中观察量子级或级分离。

0
下载
关闭预览

相关内容

Google最新《机器学习对偶性》报告,48页ppt
专知会员服务
35+阅读 · 2020年11月29日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
计算机类 | 国际会议信息7条
Call4Papers
3+阅读 · 2017年11月17日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年6月7日
Arxiv
0+阅读 · 2021年6月4日
Arxiv
0+阅读 · 2021年6月3日
Arxiv
4+阅读 · 2018年4月30日
VIP会员
相关VIP内容
Google最新《机器学习对偶性》报告,48页ppt
专知会员服务
35+阅读 · 2020年11月29日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
计算机类 | 国际会议信息7条
Call4Papers
3+阅读 · 2017年11月17日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员