We propose "collision cross-entropy" as a robust alternative to the Shannon's cross-entropy in the context of self-labeled classification with posterior models. Assuming unlabeled data, self-labeling works by estimating latent pseudo-labels, categorical distributions y, that optimize some discriminative clustering criteria, e.g. "decisiveness" and "fairness". All existing self-labeled losses incorporate Shannon's cross-entropy term targeting the model prediction, softmax, at the estimated distribution y. In fact, softmax is trained to mimic the uncertainty in y exactly. Instead, we propose the negative log-likelihood of "collision" to maximize the probability of equality between two random variables represented by distributions softmax and y. We show that our loss satisfies some properties of a generalized cross-entropy. Interestingly, it agrees with the Shannon's cross-entropy for one-hot pseudo-labels y, but the training from softer labels weakens. For example, if y is a uniform distribution at some data point, it has zero contribution to the training. Our self-labeling loss combining collision cross entropy with basic clustering criteria is convex w.r.t. pseudo-labels, but non-trivial to optimize over the probability simplex. We derive a practical EM algorithm optimizing pseudo-labels y significantly faster than generic methods, e.g. the projectile gradient descent. The collision cross-entropy consistently improves the results on multiple self-labeled clustering examples using different DNNs.
翻译:我们建议使用“ 透明性 ” 和“ 公平性 ”, 来取代香农的交叉性器官分类。 事实上, 软模在与后方模型进行自我标签分类时, 被训练来模拟不确定性。 相反, 我们建议使用“ collisition” 的负日志相似性(collisition), 以最大限度地提高分布软体和y 所代表的两个随机变量之间的平等可能性。 我们表明我们的损失符合通用交叉性的某些特性。 有趣的是, 所有现有的自我标签损失都包含香农的交叉性(交叉性) 术语, 以模型预测为对象, 软模数分布, 估计分布。 事实上, 软模数是用来模拟不确定性的。 相反, “ collisicial ” 的负日志相似性(collisibli), 以最大程度的日志样(collish), 与一些数据基点(eliveral combildal ) 的自我分类(noral) commissional roductions) 。 它对一个不易变压标准的贡献是零贡献。</s>