For agents at a contact centre receiving calls, the most important piece of information is the reason for a given call. An agent cannot provide support on a call if they do not know why a customer is calling. In this paper we describe our implementation of a commercial system to detect Purpose of Call statements in English business call transcripts in real time. We present a detailed analysis of types of Purpose of Call statements and language patterns related to them, discuss an approach to collect rich training data by bootstrapping from a set of rules to a neural model, and describe a hybrid model which consists of a transformer-based classifier and a set of rules by leveraging insights from the analysis of call transcripts. The model achieved 88.6 F1 on average in various types of business calls when tested on real life data and has low inference time. We reflect on the challenges and design decisions when developing and deploying the system.
翻译:对于在联系中心接受电话的代理人来说,最重要的信息是发出某一电话的原因。如果代理人不知道客户为什么打电话,就不能对电话提供支持。在本文中,我们描述了我们实施商业系统实时检测英语商业通话记录誊本中的呼叫目的语句的情况。我们详细分析了通话语句的类型和与之相关的语言模式,讨论了从一套规则的靴式收集丰富的培训数据的方法,从一套规则到神经模型,并描述了混合模式,其中包括以变压器为基础的分类器和一套规则,利用对通话记录进行分析的洞察力。模型在对真实生活数据进行测试时,在各种类型的商业通话中平均实现了88.6 F1,而且时间较短。我们在开发和部署该系统时,我们思考了挑战和设计决定。