Despite being widely used as a performance measure for visual detection tasks, Average Precision (AP) is limited in reflecting localisation quality, (ii) interpretability and (iii) robustness to the design choices regarding its computation, and its applicability to outputs without confidence scores. Panoptic Quality (PQ), a measure proposed for evaluating panoptic segmentation (Kirillov et al., 2019), does not suffer from these limitations but is limited to panoptic segmentation. In this paper, we propose Localisation Recall Precision (LRP) Error as the performance measure for all visual detection tasks. LRP Error, initially proposed only for object detection by Oksuz et al. (2018), does not suffer from the aforementioned limitations and is applicable to all visual detection tasks. We also introduce Optimal LRP (oLRP) Error as the minimum LRP error obtained over confidence scores to evaluate visual detectors and obtain optimal thresholds for deployment. We provide a detailed comparative analysis of LRP with AP and PQ, and use nearly 100 state-of-the-art visual detectors from seven visual detection tasks (i.e. object detection, keypoint detection, instance segmentation, panoptic segmentation, visual relationship detection, zero-shot detection and generalised zero-shot detection) using ten datasets (i.e. different COCO variants, LVIS, Open Images, Pascal, ILSVRC) to empirically show that LRP provides richer and more discriminative information than its counterparts. Code available at: https://github.com/kemaloksuz/LRP-Error
翻译:尽管平均精确度(AP)被广泛用作视觉检测任务的一项业绩计量,但平均精确度(AP)在反映地方化质量方面有限,(二)可解释性,(三)在计算时设计选择的稳健性,以及它是否适用于没有信任分数的产出。Panopic 质量(PQ)是评价全光分数的拟议措施(Kirillov等人,2019年),它并不受到这些限制,但仅限于光学分数,我们在本文件中提议,所有视觉检测任务的业绩计量都只能反映地方化召回精确度(LRP)错误。LRP错误最初只提议由Oksuz等人(2018年)进行目标检测,但并不受到上述限制,而且适用于所有视觉检测任务。我们还采用最优化的LRP(LRP),与AP和PQ(PQ)进行详细的比较分析,并使用近100个州级的直观测(ErP-RP)(i-RP),与7个视觉检测任务(ial-RV)的物体探测、关键记录/CRV(V),使用一般检测、不同视觉分段的图像检测),我们提供一般的图像检测。