We propose a self-supervised approach for training multi-frame video denoising networks. These networks predict frame t from a window of frames around t. Our self-supervised approach benefits from the video temporal consistency by penalizing a loss between the predicted frame t and a neighboring target frame, which are aligned using an optical flow. We use the proposed strategy for online internal learning, where a pre-trained network is fine-tuned to denoise a new unknown noise type from a single video. After a few frames, the proposed fine-tuning reaches and sometimes surpasses the performance of a state-of-the-art network trained with supervision. In addition, for a wide range of noise types, it can be applied blindly without knowing the noise distribution. We demonstrate this by showing results on blind denoising of different synthetic and realistic noises.
翻译:我们提议了一种自我监督的方法来培训多框架视频分解网络。 这些网络从 t 周围一个框架窗口中预测框架 t 。 我们的自我监督方法得益于视频时间一致性,通过惩罚预测框架 t 和相邻目标框架之间的损失,后者使用光学流对齐。 我们采用了拟议的在线内部学习战略,在网上学习中,预先培训的网络经过微调,从一个单一的视频中将一种新的未知的噪音类型隐藏起来。在几个框架之后,提议的微调达到,有时超过经过监督培训的最先进的网络的性能。此外,对于广泛的噪音类型,可以在不知道噪音分布的情况下盲目地应用。我们通过显示对不同合成和现实噪音的盲目分解结果来展示这一点。