The synthetic control method offers a way to estimate the effect of an intervention using weighted averages of untreated units to approximate the counterfactual outcome that the treated unit(s) would have experienced in the absence of the intervention. This method is useful for program evaluation and causal inference in observational studies. We introduce the software package scpi for estimation and inference using synthetic controls, implemented in Python, R, and Stata. For point estimation or prediction of treatment effects, the package offers an array of (possibly penalized) approaches leveraging the latest optimization methods. For uncertainty quantification, the package offers the prediction interval methods introduced by Cattaneo, Feng and Titiunik (2021) and Cattaneo, Feng, Palomba and Titiunik (2022). The paper includes numerical illustrations and a comparison with other synthetic control software.
翻译:合成控制方法为估计干预的效果提供了一种方法,利用未经处理单位的加权平均数估计干预的效果,以接近处理单位在没有干预的情况下会遇到的反事实结果,这种方法对观察研究中的方案评价和因果推断有用,我们采用了在Python、R和Stata实施的用于合成控制估计和推断的软件包Scpipi。关于点估计或治疗效果预测,该软件包提供一系列(可能受到处罚的)方法,利用最新的优化方法。关于不确定性的量化,该软件包提供了Cattaneo、Feng和Tiitunik(2021年)和Cattaneo、Feng、Palomba和Titiunik(2022年)采用的预测间隔方法,其中包括数字说明和与其他合成控制软件的比较。