In this work, semi-analytical formulae for the numerical evaluation of surface integrals occurring in Galerkin boundary element methods (BEM) in 3D are derived. The integrals appear as the entries of BEM matrices and are formed over pairs of surface triangles. Since the integrands become singular if the triangles have non-empty intersection, the transformation presented by Sauter and Schwab is used to remove the singularities. It is shown that the resulting integrals admit analytical formulae if the triangles are identical or share a common edge. Moreover, the four-dimensional integrals are reduced to one- or two-dimensional integrals for triangle pairs with common vertices or disjoint triangles respectively. The efficiency and accuracy of the formulae is demonstrated in numerical experiments.
翻译:在这项工作中,3D中Galerkin边界要素方法(BEM)中出现的表面组成部分的数值评价半分析公式是衍生出来的。组合物作为BEM矩阵的条目出现,并且由表面三角对成。如果三角形无空交叉,则原形变成单形,Sauter和Schwab提供的变形用于消除奇形。显示由此产生的组合体接受分析公式,如果三角形相同或共有边缘。此外,四维组合物被分别用于具有共同脊椎或脱节三角形的三角对的四维组合体减为一或二维组合体。公式的效率和准确性在数字实验中得到了证明。