In this work, semi-analytical formulae for the numerical evaluation of surface integrals occurring in Galerkin boundary element methods (BEM) in 3D are derived. The integrals appear as the entries of BEM matrices and are formed over pairs of surface triangles. Since the integrands become singular if the triangles have non-empty intersection, the transformation presented by Sauter and Schwab is used to remove the singularities. It is shown that the resulting integrals admit analytical formulae if the triangles are identical or share a common edge. Moreover, the four-dimensional integrals are reduced to one- or two-dimensional integrals for triangle pairs with common vertices or disjoint triangles respectively. The efficiency and accuracy of the formulae is demonstrated in numerical experiments.


翻译:在这项工作中,3D中Galerkin边界要素方法(BEM)中出现的表面组成部分的数值评价半分析公式是衍生出来的。组合物作为BEM矩阵的条目出现,并且由表面三角对成。如果三角形无空交叉,则原形变成单形,Sauter和Schwab提供的变形用于消除奇形。显示由此产生的组合体接受分析公式,如果三角形相同或共有边缘。此外,四维组合物被分别用于具有共同脊椎或脱节三角形的三角对的四维组合体减为一或二维组合体。公式的效率和准确性在数字实验中得到了证明。

0
下载
关闭预览

相关内容

Integration:Integration, the VLSI Journal。 Explanation:集成,VLSI杂志。 Publisher:Elsevier。 SIT:http://dblp.uni-trier.de/db/journals/integration/
最新《序列预测问题导论》教程,212页ppt
专知会员服务
85+阅读 · 2020年8月22日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
73+阅读 · 2020年8月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
数学建模17:黑暗森林法则与社会契约
遇见数学
4+阅读 · 2019年6月17日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
[DLdigest-8] 每日一道算法
深度学习每日摘要
4+阅读 · 2017年11月2日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Arxiv
0+阅读 · 2022年2月11日
VIP会员
相关VIP内容
相关资讯
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
数学建模17:黑暗森林法则与社会契约
遇见数学
4+阅读 · 2019年6月17日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
[DLdigest-8] 每日一道算法
深度学习每日摘要
4+阅读 · 2017年11月2日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Top
微信扫码咨询专知VIP会员