Simulating urban morphology with location attributes is a challenging task in urban science. Recent studies have shown that Generative Adversarial Networks (GANs) have the potential to shed light on this task. However, existing GAN-based models are limited by the sparsity of urban data and instability in model training, hampering their applications. Here, we propose a GAN framework with geographical knowledge, namely Metropolitan GAN (MetroGAN), for urban morphology simulation. We incorporate a progressive growing structure to learn hierarchical features and design a geographical loss to impose the constraints of water areas. Besides, we propose a comprehensive evaluation framework for the complex structure of urban systems. Results show that MetroGAN outperforms the state-of-the-art urban simulation methods by over 20% in all metrics. Inspiringly, using physical geography features singly, MetroGAN can still generate shapes of the cities. These results demonstrate that MetroGAN solves the instability problem of previous urban simulation GANs and is generalizable to deal with various urban attributes.
翻译:在城市科学中,模拟具有位置特征的城市形态学是一项具有挑战性的任务。最近的研究表明,基因反转网络(GANs)具有揭示这一任务的潜力。然而,现有的GAN型模型由于城市数据的广度和模型培训的不稳定而受到限制,妨碍了其应用。在这里,我们提出了一个具有地理知识的GAN框架,即都市GAN(MetroGAN),用于城市形态学模拟。我们加入了一个逐步增长的结构,以学习等级特征,并设计一个地理损失来强加水区的限制。此外,我们提出了一个城市系统复杂结构的综合评估框架。结果显示,MetroGAN在所有指标中都比最先进的城市模拟方法高出了20%以上。有想象力地使用物理地理特征,MetroGAN仍然可以产生城市形态。这些结果表明,MetroGAN解决了以前城市模拟GANs的不稳定问题,并且可以概括地处理各种城市特征。