In this paper we derive a new capability for robots to measure relative direction, or Angle-of-Arrival (AOA), to other robots operating in non-line-of-sight and unmapped environments with occlusions, without requiring external infrastructure. We do so by capturing all of the paths that a WiFi signal traverses as it travels from a transmitting to a receiving robot, which we term an AOA profile. The key intuition is to "emulate antenna arrays in the air" as the robots move in 3D space, a method akin to Synthetic Aperture Radar (SAR). The main contributions include development of i) a framework to accommodate arbitrary 3D trajectories, as well as continuous mobility all robots, while computing AOA profiles and ii) an accompanying analysis that provides a lower bound on variance of AOA estimation as a function of robot trajectory geometry based on the Cramer Rao Bound. This is a critical distinction with previous work on SAR that restricts robot mobility to prescribed motion patterns, does not generalize to 3D space, and/or requires transmitting robots to be static during data acquisition periods. Our method results in more accurate AOA profiles and thus better AOA estimation, and formally characterizes this observation as the informativeness of the trajectory; a computable quantity for which we derive a closed form. All theoretical developments are substantiated by extensive simulation and hardware experiments. We also show that our formulation can be used with an off-the-shelf trajectory estimation sensor. Finally, we demonstrate the performance of our system on a multi-robot dynamic rendezvous task.


翻译:在本文中,我们为机器人提供了一种新的能力,以测量相对方向,或Angle-Arrive(AOA),以测量在非线性视觉和无绘图环境中运行的其他机器人,而不需要外部基础设施。我们这样做的方法是捕捉WiFi信号穿行从传输到接收机器人(我们称之为AOA剖析图)的所有路径。关键直觉是“模拟天线阵列”,因为机器人在3D空间移动,一种类似于合成孔径雷达(SAR)的方法。主要贡献包括开发一个框架,以适应任意的3D轨迹,以及持续移动所有机器人,同时计算AOAO剖图和二),同时进行一项分析,在根据Cramer Rao Bound 进行机器人轨迹测函数的功能上,对AOA的偏差进行较低约束。我们以前在SAR上的工作限制机器人运动模式的移动性能,并不向3D空间进行概括化的同步轨道。主要贡献包括:i)一个框架,一个容纳任意的3D轨迹的多轨迹,以及一个连续的机器人,因此需要将一个固定的轨道数据转换为我们的数据。

0
下载
关闭预览

相关内容

专知会员服务
31+阅读 · 2021年6月12日
专知会员服务
25+阅读 · 2021年4月2日
【IJCAI2020】TransOMCS: 从语言图谱到常识图谱
专知会员服务
34+阅读 · 2020年5月4日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
“CVPR 2020 接受论文列表 1470篇论文都在这了
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
【泡泡一分钟】LIMO:激光和单目相机融合的视觉里程计
泡泡机器人SLAM
11+阅读 · 2019年1月16日
【泡泡一分钟】CVI-SLAM –协同视觉惯性SLAM
泡泡机器人SLAM
21+阅读 · 2018年12月18日
【泡泡一分钟】无参相机标定
泡泡机器人SLAM
3+阅读 · 2018年11月7日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
IEEE2018|An Accurate and Real-time 3D Tracking System for Robots
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
6+阅读 · 2018年3月28日
VIP会员
相关VIP内容
专知会员服务
31+阅读 · 2021年6月12日
专知会员服务
25+阅读 · 2021年4月2日
【IJCAI2020】TransOMCS: 从语言图谱到常识图谱
专知会员服务
34+阅读 · 2020年5月4日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
“CVPR 2020 接受论文列表 1470篇论文都在这了
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
【泡泡一分钟】LIMO:激光和单目相机融合的视觉里程计
泡泡机器人SLAM
11+阅读 · 2019年1月16日
【泡泡一分钟】CVI-SLAM –协同视觉惯性SLAM
泡泡机器人SLAM
21+阅读 · 2018年12月18日
【泡泡一分钟】无参相机标定
泡泡机器人SLAM
3+阅读 · 2018年11月7日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
IEEE2018|An Accurate and Real-time 3D Tracking System for Robots
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员