Probabilistic machine learning increasingly informs critical decisions in medicine, economics, politics, and beyond. We need evidence to support that the resulting decisions are well-founded. To aid development of trust in these decisions, we develop a taxonomy delineating where trust in an analysis can break down: (1) in the translation of real-world goals to goals on a particular set of available training data, (2) in the translation of abstract goals on the training data to a concrete mathematical problem, (3) in the use of an algorithm to solve the stated mathematical problem, and (4) in the use of a particular code implementation of the chosen algorithm. We detail how trust can fail at each step and illustrate our taxonomy with two case studies: an analysis of the efficacy of microcredit and The Economist's predictions of the 2020 US presidential election. Finally, we describe a wide variety of methods that can be used to increase trust at each step of our taxonomy. The use of our taxonomy highlights steps where existing research work on trust tends to concentrate and also steps where establishing trust is particularly challenging.
翻译:概率机器的学习日益为医学、经济学、政治及其他方面的关键决策提供依据。我们需要证据来支持由此产生的决策有充分依据。为了帮助发展对这些决策的信任,我们开发了一种分类学,划定了对分析的信任可以分解的地方:(1) 将现实世界目标转化为特定一组现有培训数据的目标,(2) 将培训数据的抽象目标转化为具体的数学问题,(3) 使用算法解决指定的数学问题,(4) 使用特定代码执行所选算法。我们用两个案例研究详细说明了信任在每一步都会失败,并用两个案例研究来说明我们的分类学:分析小额信贷的效力和经济学家对2020年美国总统选举的预测。最后,我们描述了可以用来在我们分类学的每一步上增加信任的多种方法。使用我们的分类法突出了现有关于信任的研究工作倾向于集中的领域的步骤,以及建立信任特别具有挑战性的步骤。