Since computing most variants of the subgraph counting problem in general graphs is conjectured to be hard, it is natural to try and design fast algorithms for restricted families of graphs. One such family that has been extensively studied is that of graphs of bounded degeneracy (e.g., planar graphs). This line of work, which started in the early 80's, culminated in a recent work of Gishboliner et al., which highlighted the importance of the task of counting homomorphic copies of cycles in graphs of bounded degeneracy. Our main result in this paper is a surprisingly tight relation between the above task and the well-studied problem of detecting (standard) copies of directed cycles in general directed graphs. More precisely, we prove the following: 1. One can compute the number of homomorphic copies of $C_{2k}$ and $C_{2k+1}$ in $n$-vertex graphs of bounded degeneracy in time $O(n^{d_{k}})$, where $d_k$ is the exponent of the fastest known algorithm for detecting directed copies of $C_k$ in general $m$-edge digraphs. 2. Conversely, one can transform any $n^{b_{k}}$ algorithm for computing the number of homomorphic copies of $C_{2k}$ or of $C_{2k+1}$ in $n$-vertex graphs of bounded degeneracy, into an $\tilde{O}(m^{b_{k}})$ time algorithm for detecting directed copies of $C_k$ in general $m$-edge digraphs. We emphasize that our first result does not use a black-box reduction (as opposed to the second result which does). Instead, we design an algorithm for computing the number of $C_{2k}$-homomorphisms (or $C_{2k+1}$-homomorphisms) in degenerate graphs and show that one part of its analysis can be reduced to the analysis of the fastest known algorithm for detecting directed $k$-cycles in general digraphs, which was carried out in a recent breakthrough of Dalirrooyfard, Vuong and Vassilevska Williams.


翻译:由于在一般图形中计算子数问题的大多数变体被推断成硬, 因此自然会尝试和设计用于限制的图形家族的快速算法。 已经广泛研究的其中一个这样的家族是受约束的变异性图表( 例如平面图 ) 。 这行始于80年代初期, 最终产生了Gishboliner 等人最近的工作, 它凸显了在捆绑的变异性图表中计算周期的同质性副本的重要性。 我们本文的主要结果是上述任务和被广泛研究过的检测( 标准) 直接的图表( 例如平面图 ) 。 这行工作在80年代初开始, 最终导致Gishboliner 等人最近的工作, 它强调了在美元中以美元计数计算 的周期。 以美元 美元 平面的平面计算结果, 以美元 美元 平面的平面计算, 以美元平面的平面分析为美元 。 以美元平面平面的平面分析 以美元平面平面的平面分析 。

0
下载
关闭预览

相关内容

知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
111+阅读 · 2020年6月10日
因果图,Causal Graphs,52页ppt
专知会员服务
250+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
181+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
196+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
【TED】什么让我们生病
英语演讲视频每日一推
7+阅读 · 2019年1月23日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Arxiv
0+阅读 · 2021年5月26日
Arxiv
0+阅读 · 2021年5月25日
Arxiv
0+阅读 · 2021年5月25日
VIP会员
相关VIP内容
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
111+阅读 · 2020年6月10日
因果图,Causal Graphs,52页ppt
专知会员服务
250+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
181+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
196+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
【TED】什么让我们生病
英语演讲视频每日一推
7+阅读 · 2019年1月23日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Top
微信扫码咨询专知VIP会员