Determining clinically relevant physiological states from multivariate time series data with missing values is essential for providing appropriate treatment for acute conditions such as Traumatic Brain Injury (TBI), respiratory failure, and heart failure. Utilizing non-temporal clustering or data imputation and aggregation techniques may lead to loss of valuable information and biased analyses. In our study, we apply the SLAC-Time algorithm, an innovative self-supervision-based approach that maintains data integrity by avoiding imputation or aggregation, offering a more useful representation of acute patient states. By using SLAC-Time to cluster data in a large research dataset, we identified three distinct TBI physiological states and their specific feature profiles. We employed various clustering evaluation metrics and incorporated input from a clinical domain expert to validate and interpret the identified physiological states. Further, we discovered how specific clinical events and interventions can influence patient states and state transitions.
翻译:确定临床相关的生理状态,对于为严重状态如创伤性脑损伤(TBI)、呼吸衰竭和心衰提供适当的治疗是必要的。利用非时间序列的聚类或数据插补和聚合技术可能会导致有价值的信息丢失和偏置分析。在我们的研究中,我们应用 SLAC-Time 算法,这是一种创新的基于自我监督的方法,通过避免插补或聚合来保持数据的完整性,提供了更有用的急性患者状态表示。通过使用 SLAC-Time 对大型研究数据集中的数据进行聚类,我们确定了三个不同的 TBI 生理状态及其特定的特征分布。我们采用了多种聚类评估指标,并结合临床专家的意见对确认的生理状态进行验证和解释。此外,我们还发现了特定的临床事件和干预措施如何影响患者状态和状态转换。