Contrastive learning has emerged as an essential approach for self-supervised learning in visual representation learning. The central objective of contrastive learning is to maximize the similarities between two augmented versions of an image (positive pairs), while minimizing the similarities between different images (negative pairs). Recent studies have demonstrated that harder negative samples, i.e., those that are more difficult to differentiate from the anchor sample, perform a more crucial function in contrastive learning. This paper proposes a novel feature-level method, namely sampling synthetic hard negative samples for contrastive learning (SSCL), to exploit harder negative samples more effectively. Specifically, 1) we generate more and harder negative samples by mixing negative samples, and then sample them by controlling the contrast of anchor sample with the other negative samples; 2) considering the possibility of false negative samples, we further debias the negative samples. Our proposed method improves the classification performance on different image datasets and can be readily integrated into existing methods.
翻译:自监督学习中的对比学习已成为视觉表示学习中至关重要的方法。对比学习的核心目标是在最大化图像的两个增强版本之间的相似性(正对),同时在不同图像之间最小化相似性(负对)。最近的研究表明,更具挑战性的负样本(即更难区分的样本)在对比学习中发挥了更为关键的作用。本文提出了一种新的特征级方法,即用于对比学习的合成硬负样本采样方法(SSCL),以更有效地利用更难的负样本。具体来说,1)我们通过混合负样本来生成更多且更难的负样本,然后通过控制锚定样本与其他负样本的对比度来对它们进行采样;2)考虑到存在误负样本的可能性,我们进一步去偏负样本。我们提出的方法提高了不同图像数据集的分类性能,并可轻松集成到现有方法中。