We present neural frailty machine (NFM), a powerful and flexible neural modeling framework for survival regressions. The NFM framework utilizes the classical idea of multiplicative frailty in survival analysis to capture unobserved heterogeneity among individuals, at the same time being able to leverage the strong approximation power of neural architectures for handling nonlinear covariate dependence. Two concrete models are derived under the framework that extends neural proportional hazard models and nonparametric hazard regression models. Both models allow efficient training under the likelihood objective. Theoretically, for both proposed models, we establish statistical guarantees of neural function approximation with respect to nonparametric components via characterizing their rate of convergence. Empirically, we provide synthetic experiments that verify our theoretical statements. We also conduct experimental evaluations over $6$ benchmark datasets of different scales, showing that the proposed NFM models outperform state-of-the-art survival models in terms of predictive performance. Our code is publicly availabel at https://github.com/Rorschach1989/nfm
翻译:我们提出了神经脆弱性机器(NFM),这是一种强大且灵活的神经建模框架,用于生存回归。NFM框架利用生存分析中的多重脆弱性的经典思想来捕捉个体间未观察到的异质性,同时能够利用神经结构处理非线性协变量的依赖性。在该框架下推导出两个具体模型,可拓展神经比例危险模型和非参数危险回归模型。两个模型都可以在似然目标下进行高效训练。理论上,针对两个模型,通过刻画其收敛速率,我们建立了关于非参数组建神经函数逼近的统计保证。在实践方面,我们提供合成实验来验证我们的理论结果。我们还对不同规模的6个基准数据集进行实验,显示所提出的NFM模型在预测表现方面优于最先进的生存模型。我们的代码公开在https://github.com/Rorschach1989/nfm。