We introduce \algname{ProxSkip} -- a surprisingly simple and provably efficient method for minimizing the sum of a smooth ($f$) and an expensive nonsmooth proximable ($\psi$) function. The canonical approach to solving such problems is via the proximal gradient descent (\algname{ProxGD}) algorithm, which is based on the evaluation of the gradient of $f$ and the prox operator of $\psi$ in each iteration. In this work we are specifically interested in the regime in which the evaluation of prox is costly relative to the evaluation of the gradient, which is the case in many applications. \algname{ProxSkip} allows for the expensive prox operator to be skipped in most iterations: while its iteration complexity is $\cO(\kappa \log \nicefrac{1}{\varepsilon})$, where $\kappa$ is the condition number of $f$, the number of prox evaluations is $\cO(\sqrt{\kappa} \log \nicefrac{1}{\varepsilon})$ only. Our main motivation comes from federated learning, where evaluation of the gradient operator corresponds to taking a local \algname{GD} step independently on all devices, and evaluation of prox corresponds to (expensive) communication in the form of gradient averaging. In this context, \algname{ProxSkip} offers an effective {\em acceleration} of communication complexity. Unlike other local gradient-type methods, such as \algname{FedAvg}, \algname{SCAFFOLD}, \algname{S-Local-GD} and \algname{FedLin}, whose theoretical communication complexity is worse than, or at best matching, that of vanilla \algname{GD} in the heterogeneous data regime, we obtain a provable and large improvement without any heterogeneity-bounding assumptions.


翻译:我们引入了 kalgname{ ProxSkip} -- -- 一种令人惊讶的简单且可辨别的有效方法{ 最大限度地减少平滑(f$) 和不光滑(psi$) 函数的总和。 解决这类问题的卡通方法就是通过 palx 梯度下移(\ algname{ ProxGD}) 算法, 该算法基于对 $f$ 的梯度和 $\\ pscial} 的 prox 运算。 在这项工作中, 我们特别感兴趣的是, Prox 与 梯度评估相比成本昂贵(f$) 和不透明(drioria) 。 Slickr=rickrickr} 使得昂贵的 prox运算器在大多数循环中被跳过: 其透析复杂性是 $(\ kaptappa)\ cofercrickral creal) 也就是称, $\\\\\\ lix rox rox rodeal deal deal devition at at at at at slement at at at at at at she a.

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
开源书:PyTorch深度学习起步
专知会员服务
51+阅读 · 2019年10月11日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
详解PyTorch中的ModuleList和Sequential
极市平台
0+阅读 · 2022年1月28日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Deep Compression/Acceleration:模型压缩加速论文汇总
极市平台
14+阅读 · 2019年5月15日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
VIP会员
相关VIP内容
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
开源书:PyTorch深度学习起步
专知会员服务
51+阅读 · 2019年10月11日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
相关资讯
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
详解PyTorch中的ModuleList和Sequential
极市平台
0+阅读 · 2022年1月28日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Deep Compression/Acceleration:模型压缩加速论文汇总
极市平台
14+阅读 · 2019年5月15日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员