The successive cancellation list decoder (SCL) is an efficient decoder for classical polar codes with low decoding error, approximating the maximum likelihood decoder (MLD) for small list sizes. Here we adapt the SCL to the task of decoding quantum polar codes and show that it inherits the high performance and low complexity of the classical case, and can approximate the quantum MLD for certain channels. We apply SCL decoding to a novel version of quantum polar codes based on the polarization weight (PW) method, which entirely avoids the need for small amounts of entanglement assistance apparent in previous quantum polar code constructions. When used to find the precise error pattern, the quantum SCL decoder (SCL-E) shows competitive performance with surface codes of similar size and low-density parity check codes of similar size and rate. The SCL decoder may instead be used to approximate the probability of each equivalence class of errors, and then choose the most likely class. We benchmark this class-oriented decoder (SCL-C) against the SCL-E decoder and find a noticeable improvement in the logical error rate. This improvement stems from the fact that the contributions from just the low-weight errors give a reasonable approximation to the error class probabilities. Both SCL-E and SCL-C maintain the complexity O(LN logN) of SCL for code size N and list size L. We also show that the list decoder can be used to gain insight into the weight distribution of the codes and how this impacts the effect of degenerate errors.


翻译:逐次取消列表译码器(SCL)是一种对低解码误差的具有高效率的经典极化码编码器,对于小的列表大小能够近似于最大似然译码器(MLD)。本文将SCL适用于解码量子极化码,并且表明它继承了经典情形的高性能和低复杂度,能够近似适用于某些信道的量子MLD。作者们将SCL译码应用到了一种基于极化重量法的新型量子极化码版本中,完全避免了以前相应的构造中所需的少量纠缠帮助。当被用于找到精确的错误模式时,量子SCL译码器(SCL-E)与类似大小和低密度奇偶校验码差不多的表面码具有相似的性能。SCL译码器也可能被用来逼近每个等价类的错误概率,并选择最可能的类。与SCL-E译码器相比,本文还引入了以选定类为导向的译码器(SCL-C),并且发现后者有明显的逻辑错误率的提升。这种提升是因为仅仅低权重的错误贡献就能够提供合理地逼近错误类概率。SCL-E和SCL-C均保持了与代码大小N和列表大小L的SCL相同的O(LN logN)复杂度。同时,本文还表明,列表译码器可以用来更好地理解代码的重量分布及其对重复错误的影响。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
39+阅读 · 2020年10月13日
专知会员服务
161+阅读 · 2020年1月16日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
RF、GBDT、XGBoost面试级整理
数据挖掘入门与实战
17+阅读 · 2018年3月21日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年5月24日
Arxiv
10+阅读 · 2021年11月3日
VIP会员
相关基金
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员