In Oncology, trials evaluating drug combinations are becoming more common. While combination therapies bring the potential for greater efficacy, they also create unique challenges for ensuring drug safety. In Phase-I dose escalation trials of drug combinations, model-based approaches enable efficient use of information gathered, but the models need to account for trial complexities: appropriate modeling of interactions becomes increasingly important with growing numbers of drugs being tested simultaneously in a given trial. In principle, we can use data from multiple arms testing varying combinations to jointly estimate toxicity of the drug combinations. However, such efforts have highlighted limitations when modelling drug-drug interactions in the Bayesian Logistic Regression Model (BLRM) framework used to ensure patient safety. Previous models either do not account for non-monotonicity due to antagonistic toxicity, or exhibit the fundamental flaw of exponentially overpowering the contributions of the individual drugs in the dose-response. This specifically leads to issues when drug combinations exhibit antagonistic toxicity, in which case the toxicity probability gets vanishingly small as doses get very large. We put forward additional constraints inspired by Paracelsus' intuition of "the dose makes the poison" which avoid this flaw and present an improved interaction model which is compatible with these constraints. We create instructive data scenarios that showcase the improved behavior of this more constrained drug-drug interaction model in terms of preventing further dosing at overly toxic dose combinations and more sensible dose-finding under antagonistic drug toxicity. This model is now available in the open-source OncoBayes2 R package that implements the BLRM framework for an arbitrary number of drugs and trial arms.


翻译:在肿瘤学方面,评估药物组合的试验越来越常见。虽然混合疗法带来更大的功效潜力,但它们也给确保药物安全带来了独特的挑战。在第一阶段药物组合的剂量升级试验中,基于模型的方法能够有效地使用所收集的信息,但模型需要考虑到试验的复杂性:适当的相互作用模型随着在特定试验中同时测试越来越多的药物而变得日益重要。原则上,我们可以使用多种武器试验的不同组合的数据来共同估计药物组合的毒性。然而,这种努力突出了在Bayesian毒性回归模型(BLRM)框架用于确保病人安全的药物-药物互动模拟时的局限性。在BLRM框架(BLRM)中,以前的模式要么没有考虑到所收集的信息的不流动性,而是需要考虑到所收集的信息的复杂性:适当的相互作用模式变得日益重要,但是随着在特定试验中同时同时测试越来越多的药物。这特别导致了药物组合表现出的毒性问题,因此毒性概率随着剂量变得非常小而消失。我们在Pacelus的毒性回归模型(BLRRM)框架中,我们提出了额外的限制。在“不透明性反应模型下,使得这些药物的药物的剂量反应更加符合这个模型,而我们更准确地展示了一种对药物反应的药物的精确的精确的精确的模型,从而可以避免了一种更精确的试验,从而使得这种检验的药物的药物的检验的精确的检验的检验的检验的精确性能使得这个模型在这种检验的精确的特性的精确性能得以避免了。

0
下载
关闭预览

相关内容

IFIP TC13 Conference on Human-Computer Interaction是人机交互领域的研究者和实践者展示其工作的重要平台。多年来,这些会议吸引了来自几个国家和文化的研究人员。官网链接:http://interact2019.org/
百篇论文纵览大型语言模型最新研究进展
专知会员服务
69+阅读 · 2023年3月31日
NeurlPS 2022 | 自然语言处理相关论文分类整理
专知会员服务
49+阅读 · 2022年10月2日
专知会员服务
123+阅读 · 2020年9月8日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
40+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
LibRec 精选:推荐系统的常用数据集
LibRec智能推荐
17+阅读 · 2019年2月15日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
45+阅读 · 2022年9月19日
Arxiv
23+阅读 · 2022年2月24日
Arxiv
65+阅读 · 2021年6月18日
Directions for Explainable Knowledge-Enabled Systems
Arxiv
26+阅读 · 2020年3月17日
Arxiv
20+阅读 · 2019年11月23日
VIP会员
相关VIP内容
百篇论文纵览大型语言模型最新研究进展
专知会员服务
69+阅读 · 2023年3月31日
NeurlPS 2022 | 自然语言处理相关论文分类整理
专知会员服务
49+阅读 · 2022年10月2日
专知会员服务
123+阅读 · 2020年9月8日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
40+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
LibRec 精选:推荐系统的常用数据集
LibRec智能推荐
17+阅读 · 2019年2月15日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
相关基金
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员