In Oncology, trials evaluating drug combinations are becoming more common. While combination therapies bring the potential for greater efficacy, they also create unique challenges for ensuring drug safety. In Phase-I dose escalation trials of drug combinations, model-based approaches enable efficient use of information gathered, but the models need to account for trial complexities: appropriate modeling of interactions becomes increasingly important with growing numbers of drugs being tested simultaneously in a given trial. In principle, we can use data from multiple arms testing varying combinations to jointly estimate toxicity of the drug combinations. However, such efforts have highlighted limitations when modelling drug-drug interactions in the Bayesian Logistic Regression Model (BLRM) framework used to ensure patient safety. Previous models either do not account for non-monotonicity due to antagonistic toxicity, or exhibit the fundamental flaw of exponentially overpowering the contributions of the individual drugs in the dose-response. This specifically leads to issues when drug combinations exhibit antagonistic toxicity, in which case the toxicity probability gets vanishingly small as doses get very large. We put forward additional constraints inspired by Paracelsus' intuition of "the dose makes the poison" which avoid this flaw and present an improved interaction model which is compatible with these constraints. We create instructive data scenarios that showcase the improved behavior of this more constrained drug-drug interaction model in terms of preventing further dosing at overly toxic dose combinations and more sensible dose-finding under antagonistic drug toxicity. This model is now available in the open-source OncoBayes2 R package that implements the BLRM framework for an arbitrary number of drugs and trial arms.
翻译:在肿瘤学方面,评估药物组合的试验越来越常见。虽然混合疗法带来更大的功效潜力,但它们也给确保药物安全带来了独特的挑战。在第一阶段药物组合的剂量升级试验中,基于模型的方法能够有效地使用所收集的信息,但模型需要考虑到试验的复杂性:适当的相互作用模型随着在特定试验中同时测试越来越多的药物而变得日益重要。原则上,我们可以使用多种武器试验的不同组合的数据来共同估计药物组合的毒性。然而,这种努力突出了在Bayesian毒性回归模型(BLRM)框架用于确保病人安全的药物-药物互动模拟时的局限性。在BLRM框架(BLRM)中,以前的模式要么没有考虑到所收集的信息的不流动性,而是需要考虑到所收集的信息的复杂性:适当的相互作用模式变得日益重要,但是随着在特定试验中同时同时测试越来越多的药物。这特别导致了药物组合表现出的毒性问题,因此毒性概率随着剂量变得非常小而消失。我们在Pacelus的毒性回归模型(BLRRM)框架中,我们提出了额外的限制。在“不透明性反应模型下,使得这些药物的药物的剂量反应更加符合这个模型,而我们更准确地展示了一种对药物反应的药物的精确的精确的精确的模型,从而可以避免了一种更精确的试验,从而使得这种检验的药物的药物的检验的精确的检验的检验的检验的精确性能使得这个模型在这种检验的精确的特性的精确性能得以避免了。