Image recognition with prototypes is considered an interpretable alternative for black box deep learning models. Classification depends on the extent to which a test image "looks like" a prototype. However, perceptual similarity for humans can be different from the similarity learned by the classification model. Hence, only visualising prototypes can be insufficient for a user to understand what a prototype exactly represents, and why the model considers a prototype and an image to be similar. We address this ambiguity and argue that prototypes should be explained. We improve interpretability by automatically enhancing visual prototypes with textual quantitative information about visual characteristics deemed important by the classification model. Specifically, our method clarifies the meaning of a prototype by quantifying the influence of colour hue, shape, texture, contrast and saturation and can generate both global and local explanations. Because of the generality of our approach, it can improve the interpretability of any similarity-based method for prototypical image recognition. In our experiments, we apply our method to the existing Prototypical Part Network (ProtoPNet). Our analysis confirms that the global explanations are generalisable, and often correspond to the visually perceptible properties of a prototype. Our explanations are especially relevant for prototypes which might have been interpreted incorrectly otherwise. By explaining such 'misleading' prototypes, we improve the interpretability and simulatability of a prototype-based classification model. We also use our method to check whether visually similar prototypes have similar explanations, and are able to discover redundancy. Code is available at https://github.com/M-Nauta/Explaining_Prototypes .


翻译:对原型进行图像识别被认为是对黑盒深层学习模型的一种可解释的替代方法。 分类取决于测试图像“ 看上去像” 的原型。 然而, 人类的感知相似性可能不同于分类模型所学的相似性。 因此, 只有可视化原型可能不足以让用户理解原型的确切代表, 以及为什么模型认为任何基于类似性的原型和图像都相似。 我们解决了这种模糊性, 并主张原型应该加以解释。 我们通过自动加强视觉原型来改进可判读性。 我们通过对分类模型中认为重要的视觉特征的文字定量信息来自动增强可判读性。 具体地说, 我们的方法可以澄清原型的原型的含义, 量化颜色、 形状、 形状、 纹理、 对比和饱和度, 并且可以产生全球性解释。 由于我们的方法的笼统性, 我们的原型的原型的原型, 我们的模型可以被应用到现有的ProtoPNet(ProtoNet) 。 我们的分析确认全球的解释是可概括的, 也常常地解释。 我们的原型的原型解释。 我们的原型解释的原型的原型的原型, 我们的原型的原型, 也可以的原型可以用来解释。

0
下载
关闭预览

相关内容

专知会员服务
53+阅读 · 2020年11月17日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
CVPR 2019 | 34篇 CVPR 2019 论文实现代码
AI科技评论
21+阅读 · 2019年6月23日
已删除
将门创投
5+阅读 · 2019年4月29日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
推荐|深度强化学习聊天机器人(附论文)!
全球人工智能
4+阅读 · 2018年1月30日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
5+阅读 · 2020年3月17日
Interpretable CNNs for Object Classification
Arxiv
20+阅读 · 2020年3月12日
Arxiv
19+阅读 · 2018年10月25日
Arxiv
16+阅读 · 2018年2月7日
Arxiv
3+阅读 · 2017年12月23日
Arxiv
4+阅读 · 2017年11月13日
VIP会员
相关VIP内容
专知会员服务
53+阅读 · 2020年11月17日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
相关资讯
CVPR 2019 | 34篇 CVPR 2019 论文实现代码
AI科技评论
21+阅读 · 2019年6月23日
已删除
将门创投
5+阅读 · 2019年4月29日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
推荐|深度强化学习聊天机器人(附论文)!
全球人工智能
4+阅读 · 2018年1月30日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员