Novel non-volatile memory (NVM) technologies offer high-speed and high-density data storage. In addition, they overcome the von Neumann bottleneck by enabling computing-in-memory (CIM). Various computer architectures have been proposed to integrate CIM blocks in their design, forming a mixed-signal system to combine the computational benefits of CIM with the robustness of conventional CMOS. Novel electronic design automation (EDA) tools are necessary to design and manufacture these so-called neuromorphic systems. Furthermore, EDA tools must consider the impact of security vulnerabilities, as hardware security attacks have increased in recent years. Existing information flow analysis (IFA) frameworks offer an automated tool-suite to uphold the confidentiality property for sensitive data during the design of hardware. However, currently available mixed-signal EDA tools are not capable of analyzing the information flow of neuromorphic systems. To illustrate the shortcomings, we develop information flow protocols for NVMs that can be easily integrated in the already existing tool-suites. We show the limitation of the state-of-the-art by analyzing the flow from sensitive signals through multiple memristive crossbar structures to potential untrusted components and outputs. Finally, we provide a thorough discussion of the merits and flaws of the mixed-signal IFA frameworks on neuromorphic systems.
翻译:新型非易失性存储器 (NVM) 技术提供了高速和高密度的数据存储。此外,它们通过使计算存储 (CIM) 成为可能而克服了 von Neumann 瓶颈。已经提出了多种将 CIM 块集成到设计中的计算机体系结构,形成了混合信号系统,以将 CIM 的计算优势与传统 CMOS 的鲁棒性相结合。新颖的电子设计自动化 (EDA) 工具是设计和制造这些所谓的神经形态系统的必要条件。此外,EDA 工具必须考虑安全漏洞的影响,因为硬件安全攻击近年来有所增加。现有的信息流分析 (IFA) 框架提供了一个自动化工具套件,用于在硬件设计期间维护敏感数据的保密性。然而,目前可用的混合信号 EDA 工具无法分析神经形态系统的信息流。为说明这些不足,我们为 NVM 开发了信息流协议,可轻松集成到已有的工具套件中。我们通过分析从敏感信号通过多个 memristive 交叉结构到潜在的不受信任的组件和输出的流的限制,展示了当前技术的局限性。最后,我们对神经形态系统上混合信号 IFA 框架的优点和缺点进行了详细讨论。