The main difficulty in high-dimensional anomaly detection tasks is the lack of anomalous data for training. And simply collecting anomalous data from the real world, common distributions, or the boundary of normal data manifold may face the problem of missing anomaly modes. This paper first introduces a novel method to generate anomalous data by breaking up global structures while preserving local structures of normal data at multiple levels. It can efficiently expose local abnormal structures of various levels. To fully exploit the exposed multi-level abnormal structures, we propose to train multiple level-specific patch-based detectors with contrastive losses. Each detector learns to detect local abnormal structures of corresponding level at all locations and outputs patchwise anomaly scores. By aggregating the outputs of all level-specific detectors, we obtain a model that can detect all potential anomalies. The effectiveness is evaluated on MNIST, CIFAR10, and ImageNet10 dataset, where the results surpass the accuracy of state-of-the-art methods. Qualitative experiments demonstrate our model is robust that it unbiasedly detects all anomaly modes.
翻译:高维异常点探测任务的主要困难在于缺乏用于培训的异常数据。简单地从真实世界、共同分布或正常数据元的边界收集异常数据,可能会面临缺失异常模式的问题。本文首先引入了一种新的方法,通过打破全球结构生成异常数据,同时维护多个层次的当地正常数据结构。它可以有效地暴露不同层次的本地异常结构。为了充分利用暴露的多层次异常结构,我们提议培训多层次的、有对比性的、基于偏差的检测器。每个检测器都学会在所有地点探测相应的本地异常结构,并得出不匹配的异常分数。通过汇总所有级别探测器的输出,我们获得了一种能够检测所有潜在异常现象的模式。对效果进行评估的是MNIST、CIFAR10和图像Net10数据集,其结果超过了最新方法的准确性。定性实验表明,我们的模型非常可靠,能够公正地检测所有异常模式。