We present $\textit{universal}$ estimators for the statistical mean, variance, and scale (in particular, the interquartile range) under pure differential privacy. These estimators are universal in the sense that they work on an arbitrary, unknown distribution $\mathcal{P}$ over $\mathbb{R}$, while yielding strong utility guarantees except for ill-behaved $\mathcal{P}$. For certain distribution families like Gaussians or heavy-tailed distributions, we show that our universal estimators match or improve existing estimators, which are often specifically designed for the given family and under $\textit{priori}$ boundedness assumptions on the mean and variance of $\mathcal{P}$. The removal of these boundedness assumptions is surprising, as existing work believes that they are necessary under pure differential privacy.
翻译:我们用纯差异隐私提出统计平均值、差异和比例(特别是跨度范围)的估算值。这些估算值是普遍性的,因为其使用任意的、未知的分布值$\mathcal{P}$ 超过$\mathbb{R}$,同时产生强大的效用保障,但坏坏坏的美元除外。对于高斯人或重尾分发等某些分配家庭,我们显示,我们的普遍估算值匹配或改进了现有的估算值,这些估算值通常专门为特定家庭设计,在美元/纯值/纯值/纯值/美元下,在美元/美元/纯值/纯值/纯值/纯值/纯值/纯值/纯值/纯值/纯值/纯值/纯值/纯值/纯值/低值/纯值/纯值/纯值/纯值/纯值/纯值/纯值/纯值/纯值/纯值/纯值/纯值/纯值/纯值/纯值/纯值/纯值/纯值/纯值/纯值/纯值/正)假设。