It is well known that while the independence of random variables implies zero correlation, the opposite is not true. Namely, uncorrelated random variables are not necessarily independent. In this note we show that the implication could be reversed if we consider the localised version of the correlation coefficient. More specifically, we show that if random variables are conditionally (locally) uncorrelated for any quantile conditioning sets, then they are independent. For simplicity, we focus on the absolutely continuous case. Also, we illustrate potential usefulness of the stated result using two simple examples.
翻译:众所周知,尽管随机变量的独立性意味着零相关性,但相反的情况并非如此。 也就是说, 与非cor相关的随机变量不一定是独立的。 在本说明中, 我们表明, 如果我们考虑相关系数的本地化版本, 则该影响可以被逆转。 更具体地说, 我们显示, 如果随机变量在条件上( 本地) 与任何大小调控组不相关, 那么它们就具有独立性。 为了简单起见, 我们专注于绝对持续的情况。 另外, 我们用两个简单的例子来说明声明的结果的潜在有用性 。