Inspired by Hilberg's hypothesis, which states that mutual information between blocks for natural language grows like a power law, we seek for links between power-law growth rate of algorithmic mutual information and of some estimator of the unifilar order, i.e., the number of hidden states in the generating stationary ergodic source in its minimal unifilar hidden Markov representation. We consider an order estimator which returns the smallest order for which the maximum likelihood is larger than a weakly penalized universal probability. This order estimator is intractable and follows the ideas by Merhav, Gutman, and Ziv (1989) and by Ziv and Merhav (1992) but in its exact form seems overlooked despite attractive theoretical properties. In particular, we can prove both strong consistency of this order estimator and an upper bound of algorithmic mutual information in terms of it. Using both results, we show that all (also uncomputable) sources of a finite unifilar order exhibit sub-power-law growth of algorithmic mutual information and of the unifilar order estimator. In contrast, we also exhibit an example of unifilar processes of a countably infinite order and an algorithmically random oracle, for which the mentioned two quantities grow as a power law with the same exponent. We also relate our results to natural language research.


翻译:在希尔伯格的假设启发下,自然语言区块之间的相互信息像权力法一样增长,我们寻求在算法相互信息的权力法增长率和某些非虚拟秩序的估算者之间建立联系,即,生成定序源中隐藏的定序源数,以其最小的隐隐隐的Markov为代表。我们考虑一个定序估计器,该定序返回最小的顺序,其最大可能性大于微弱的受处罚的普遍概率。这个定序测量器非常棘手,遵循Merhav、Gutman和Ziv(1989年)以及Ziv和Merhav(1992年)的理念,但尽管理论性质具有吸引力,却似乎完全被忽视了。特别是,我们既可以证明该定序标码源的高度一致,又可以证明它具有最上层的逻辑相互信息。我们用两个结果来证明,一个(同样无法令人接受的)定序的所有(不可辩驳的)来源显示了算法共同信息以及不可估量的顺序的次权法增长。在对比中,我们用一个无限的自然序列的模型展示了我们所引用的自然秩序,一个无限的模型。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
86+阅读 · 2020年12月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
105+阅读 · 2020年6月10日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年1月11日
Implicit Maximum Likelihood Estimation
Arxiv
7+阅读 · 2018年9月24日
VIP会员
相关VIP内容
专知会员服务
50+阅读 · 2020年12月14日
最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
86+阅读 · 2020年12月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
105+阅读 · 2020年6月10日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员