This paper presents a BIM-discrepancy-driven active sensing framework for cooperative navigation between unmanned aerial vehicles (UAVs) and unmanned ground vehicles (UGVs) in dynamic construction environments. Traditional navigation approaches rely on static Building Information Modeling (BIM) priors or limited onboard perception. In contrast, our framework continuously fuses real-time LiDAR data from aerial and ground robots with BIM priors to maintain an evolving 2D occupancy map. We quantify navigation safety through a unified corridor-risk metric integrating occupancy uncertainty, BIM-map discrepancy, and clearance. When risk exceeds safety thresholds, the UAV autonomously re-scans affected regions to reduce uncertainty and enable safe replanning. Validation in PX4-Gazebo simulation with Robotec GPU LiDAR demonstrates that risk-triggered re-scanning reduces mean corridor risk by 58% and map entropy by 43% compared to static BIM navigation, while maintaining clearance margins above 0.4 m. Compared to frontier-based exploration, our approach achieves similar uncertainty reduction in half the mission time. These results demonstrate that integrating BIM priors with risk-adaptive aerial sensing enables scalable, uncertainty-aware autonomy for construction robotics.
翻译:本文提出了一种基于建筑信息模型(BIM)差异驱动的主动感知框架,用于动态施工环境中无人机(UAV)与无人地面车辆(UGV)的协同导航。传统导航方法依赖于静态BIM先验信息或有限的机载感知能力。相比之下,本框架持续融合来自空中与地面机器人的实时激光雷达数据与BIM先验信息,以维护动态演化的二维占据栅格地图。我们通过集成占据不确定性、BIM地图差异及安全距离的统一走廊风险度量来量化导航安全性。当风险超过安全阈值时,无人机将自主重新扫描受影响区域以降低不确定性,并支持安全路径重规划。在基于PX4-Gazebo仿真平台与Robotec GPU激光雷达的验证实验中表明:相较于静态BIM导航,风险触发的重扫描机制使平均走廊风险降低58%,地图熵值减少43%,同时保持0.4米以上的安全裕度。与基于前沿探索的方法相比,本方法在任务时间减半的情况下实现了相近的不确定性降低效果。这些结果证明,将BIM先验信息与风险自适应空中感知相结合,可为建筑机器人提供可扩展的、具备不确定性感知能力的自主导航解决方案。