Accurate Remaining Useful Life (RUL) prediction coupled with uncertainty quantification remains a critical challenge in aerospace prognostics. This research introduces a novel uncertainty-aware deep learning framework that learns aleatoric uncertainty directly through probabilistic modeling, an approach unexplored in existing CMAPSS-based literature. Our hierarchical architecture integrates multi-scale Inception blocks for temporal pattern extraction, bidirectional Long Short-Term Memory networks for sequential modeling, and a dual-level attention mechanism operating simultaneously on sensor and temporal dimensions. The innovation lies in the Bayesian output layer that predicts both mean RUL and variance, enabling the model to learn data-inherent uncertainty. Comprehensive preprocessing employs condition-aware clustering, wavelet denoising, and intelligent feature selection. Experimental validation on NASA CMAPSS benchmarks (FD001-FD004) demonstrates competitive overall performance with RMSE values of 16.22, 19.29, 16.84, and 19.98 respectively. Remarkably, our framework achieves breakthrough critical zone performance (RUL <= 30 cycles) with RMSE of 5.14, 6.89, 5.27, and 7.16, representing 25-40 percent improvements over conventional approaches and establishing new benchmarks for safety-critical predictions. The learned uncertainty provides well-calibrated 95 percent confidence intervals with coverage ranging from 93.5 percent to 95.2 percent, enabling risk-aware maintenance scheduling previously unattainable in CMAPSS literature.
翻译:精确的剩余使用寿命预测结合不确定性量化,在航空预测领域仍是一个关键挑战。本研究提出了一种新颖的不确定性感知深度学习框架,通过概率建模直接学习随机不确定性,这一方法在现有基于CMAPSS的文献中尚未探索。我们的分层架构集成了多尺度Inception模块用于时序模式提取、双向长短期记忆网络用于序列建模,以及一个同时在传感器维度和时间维度上运行的双层注意力机制。创新之处在于贝叶斯输出层,它同时预测剩余使用寿命的均值和方差,使模型能够学习数据固有的不确定性。全面的预处理采用了条件感知聚类、小波去噪和智能特征选择。在NASA CMAPSS基准数据集(FD001-FD004)上的实验验证展示了具有竞争力的整体性能,均方根误差值分别为16.22、19.29、16.84和19.98。值得注意的是,我们的框架在关键区域(剩余使用寿命≤30个循环)取得了突破性性能,均方根误差为5.14、6.89、5.27和7.16,相比传统方法提升了25-40%,为安全关键预测设立了新基准。学习到的不确定性提供了校准良好的95%置信区间,覆盖范围在93.5%至95.2%之间,实现了先前在CMAPSS文献中无法达到的风险感知维护调度。