Ultrasound images are widespread in medical diagnosis for muscle-skeletal, cardiac, and obstetrical diseases, due to the efficiency and non-invasiveness of the acquisition methodology. However, ultrasound acquisition introduces noise in the signal, which corrupts the resulting image and affects further processing steps, e.g., segmentation and quantitative analysis. We define a novel deep learning framework for the real-time denoising of ultrasound images. Firstly, we compare state-of-the-art methods for denoising (e.g., spectral, low-rank methods) and select WNNM (Weighted Nuclear Norm Minimisation) as the best denoising in terms of accuracy, preservation of anatomical features, and edge enhancement. Then, we propose a tuned version of WNNM (tuned-WNNM) that improves the quality of the denoised images and extends its applicability to ultrasound images. Through a deep learning framework, the tuned-WNNM qualitatively and quantitatively replicates WNNM results in real-time. Finally, our approach is general in terms of its building blocks and parameters of the deep learning and high-performance computing framework; in fact, we can select different denoising algorithms and deep learning architectures.
翻译:超声波图像在肌肉骨骼、心脏和产科疾病的医学诊断中非常普遍,这是由于购置方法的效率和非侵入性。然而,超声波获取在信号中引入噪音,从而腐蚀由此产生的图像并影响进一步的处理步骤,例如分解和定量分析。我们为超声波图像的实时降色定义了一个新的深层次学习框架。首先,我们比较了最先进的消音方法(例如光谱、低级别方法),并选择了WNNNM(微核核诺姆最小化)作为准确性、保存解剖特征和边缘增强方面的最佳降音。然后,我们提出了WNNM(调-WNNM)的调制版本,以提高降音图像的质量,将其应用扩大到超声波图像。我们通过一个深层学习框架,对WNNM的定性和定量调控效复制了WNNM的结果。最后,我们的方法在深度学习、高性能和深深层次框架方面,可以选择高性、高性能和深级框架。我们从深层次的建筑中选择了高性、深层次的建筑结构和参数。