The paper presents a novel learning-based sampling strategy that guarantees rejection-free sampling of the free space in both biased and uniform conditions. Data of past configurations of the autonomous system performing a repetitive task is leveraged to estimate a non-parametric probabilistic description of the region of the free space where feasible solutions of the motion planning problem are likely to be found. The tuning parameters of the kernel density estimator -- the bandwidth and the kernel -- are then used to properly alter the description of the free space such that no sampled configuration can fall outside the original free space. The paper demonstrates the proposed method on two case studies: the first showcases the sampling strategies on 2D historical data from real surface vessels, whereas the second applies the method on 3D drone data gathered from a real quadrotor system. Both instances show that the proposed biased and approximately uniform sampling schemes are able to guarantee rejection-free sampling of the considered workspaces.
翻译:论文介绍了一种新的基于学习的抽样战略,它保证在偏差和统一的条件下对自由空间进行无排斥抽样;利用自主系统过去配置的重复性任务数据来估计自由空间区域的非参数概率性描述,因为有可能找到可行的行动规划问题解决办法;然后使用内核密度估计仪的调试参数 -- -- 带宽和内核 -- -- 来适当改变对自由空间的描述,使任何抽样配置都无法在原来的自由空间之外进行;文件展示了两个案例研究的拟议方法:第一个实例展示了实际表面船只2D历史数据的取样战略,第二个实例则应用了从实际的夸德罗托系统收集的3D无人机数据方法;两个实例都表明,拟议的偏差和大致统一的取样方法能够保证对考虑的工作空间进行无排斥抽样。