This paper introduces differentiable higher-order control barrier functions (CBF) that are end-to-end trainable together with learning systems. CBFs are usually overly conservative, while guaranteeing safety. Here, we address their conservativeness by softening their definitions using environmental dependencies without loosing safety guarantees, and embed them into differentiable quadratic programs. These novel safety layers, termed a BarrierNet, can be used in conjunction with any neural network-based controller, and can be trained by gradient descent. BarrierNet allows the safety constraints of a neural controller be adaptable to changing environments. We evaluate them on a series of control problems such as traffic merging and robot navigations in 2D and 3D space, and demonstrate their effectiveness compared to state-of-the-art approaches.


翻译:本文引入了与学习系统一起可端到端训练的不同高端控制屏障功能(CBF ) 。 CBF通常过于保守,同时保障安全。在这里,我们通过在不失去安全保障的情况下使用环境依赖性来软化其定义,并将其嵌入不同的二次方程式,从而解决其保守性。这些被称为“屏障网”的新颖的安全层可以与任何神经网络控制器一起使用,并且可以接受梯度下降的培训。 屏障网允许神经控制器的安全限制适应不断变化的环境。 我们评估了一系列控制问题,如2D和3D空间的交通合并和机器人导航,并展示了它们与最先进的方法相比的有效性。

0
下载
关闭预览

相关内容

专知会员服务
44+阅读 · 2020年10月31日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
【IJCAJ 2020】多通道神经网络 Multi-Channel Graph Neural Networks
专知会员服务
25+阅读 · 2020年7月19日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Arxiv
6+阅读 · 2021年10月25日
Arxiv
8+阅读 · 2021年2月19日
Arxiv
4+阅读 · 2020年9月28日
Attention Network Robustification for Person ReID
Arxiv
5+阅读 · 2019年10月15日
Arxiv
6+阅读 · 2018年10月3日
VIP会员
相关资讯
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Top
微信扫码咨询专知VIP会员