We construct a symplectic integrator for non-separable Hamiltonian systems combining an extended phase space approach of Pihajoki and the symmetric projection method. The resulting method is semiexplicit in the sense that the main time evolution step is explicit whereas the symmetric projection step is implicit. The symmetric projection binds potentially diverging copies of solutions, thereby remedying the main drawback of the extended phase space approach. Moreover, our semiexplicit method is symplectic in the original phase space. This is in contrast to existing extended phase space integrators, which are symplectic only in the extended phase space. We demonstrate that our method exhibits an excellent long-time preservation of invariants, and also that it tends to be as fast as Tao's explicit modified extended phase space integrator particularly with higher-order implementations and for higher-dimensional problems.
翻译:我们为不可分离的汉密尔顿系统建造了一个共振集成器,结合了Pihajoki的扩展阶段空间方法和对称投射方法。由此得出的方法半明白,因为主要的时间演变步骤是明确的,而对称投射步骤是隐含的。对称投影结合了可能存在差异的解决方案副本,从而弥补了扩展阶段空间方法的主要缺陷。此外,我们的半显性方法在最初的阶段空间是互振的。这与现有的扩展阶段空间集成器形成对照,后者只在扩展的阶段空间中具有共振性。我们证明,我们的方法显示了对各种变异物的长期保护效果极好,而且往往与道的明显修改的扩展的扩展空间集成器一样快,特别是高阶执行和高维问题。