Deep neural networks generalize well despite being exceedingly overparametrized, but understanding the statistical principles behind this so called benign-overfitting phenomenon is not yet well understood. Recently there has been remarkable progress towards understanding benign-overfitting in simpler models, such as linear regression and, even more recently, linear classification. This paper studies benign-overfitting for data generated from a popular binary Gaussian mixtures model (GMM) and classifiers trained by support-vector machines (SVM). Our approach has two steps. First, we leverage an idea introduced in (Muthukumar et al. 2020) to relate the SVM solution to the least-squares (LS) solution. Second, we derive novel non-asymptotic bounds on the classification error of LS solution. Combining the two gives sufficient conditions on the overparameterization ratio and the signal-to-noise ratio that lead to benign overfitting. We corroborate our theoretical findings with numerical simulations.
翻译:深神经网络尽管被过分地过分地过度分解,但人们尚未充分理解这一所谓的良性改造现象背后的统计原则。 最近,在理解更简单的模型(如线性回归,甚至更近一些的线性分类)的良性改造方面取得了显著的进展。 本文研究如何对流行的高斯混合物模型(GMM)和接受支持性摄像机(SVM)培训的分类器(SVM)生成的数据进行良性调整。 我们的方法有两个步骤。 首先,我们利用在(Muthukummar等人,2020年)中提出的一个想法,将SVM解决方案与最小的方(LS)解决方案联系起来。 其次,我们从LS解决方案的分类错误上得出了新的非抽象的界限。 将两者结合起来为超分度比率和导致良性超度的信号到噪音比率提供了充分的条件。 我们用数字模拟来证实我们的理论结论。