Graph embedding techniques are a staple of modern graph learning research. When using embeddings for downstream tasks such as classification, information about their stability and robustness, i.e., their susceptibility to sources of noise, stochastic effects, or specific parameter choices, becomes increasingly important. As one of the most prominent graph embedding schemes, we focus on node2vec and analyse its embedding quality from multiple perspectives. Our findings indicate that embedding quality is unstable with respect to parameter choices, and we propose strategies to remedy this in practice.
翻译:图形嵌入技术是现代图表学习研究的主轴。 当使用嵌入器进行分类等下游任务时,关于其稳定性和稳健性的信息,即它们易受噪音来源、随机效应或特定参数选择的影响,这些都变得日益重要。 作为最突出的图形嵌入方案之一,我们注重节点2vec,并从多个角度分析其嵌入质量。我们的研究结果显示,嵌入质量在参数选择方面不稳定,我们提出了在实践中纠正这一状况的战略。