Mapping behavioral actions to neural activity is a fundamental goal of neuroscience. As our ability to record large neural and behavioral data increases, there is growing interest in modeling neural dynamics during adaptive behaviors to probe neural representations. In particular, neural latent embeddings can reveal underlying correlates of behavior, yet, we lack non-linear techniques that can explicitly and flexibly leverage joint behavior and neural data. Here, we fill this gap with a novel method, CEBRA, that jointly uses behavioral and neural data in a hypothesis- or discovery-driven manner to produce consistent, high-performance latent spaces. We validate its accuracy and demonstrate our tool's utility for both calcium and electrophysiology datasets, across sensory and motor tasks, and in simple or complex behaviors across species. It allows for single and multi-session datasets to be leveraged for hypothesis testing or can be used label-free. Lastly, we show that CEBRA can be used for the mapping of space, uncovering complex kinematic features, and rapid, high-accuracy decoding of natural movies from visual cortex.
翻译:神经活动的绘图行为动作是神经科学的一个基本目标。 随着我们记录大型神经和行为数据的能力的提高,人们越来越有兴趣在适应行为期间对神经动态进行模型化,以探测神经表现。 特别是,神经潜伏潜伏可以揭示行为的潜在关联性,然而,我们缺乏非线性技术,无法明确和灵活地利用联合行为和神经数据。在这里,我们用一种新颖的方法(CEBRA)填补这一空白,即CEBRA,它以假设或发现驱动的方式共同使用行为和神经数据来生成一致的、高性能的潜在空间。我们验证其准确性,并展示了我们的工具对于跨感官和运动任务以及跨物种的简单或复杂行为的计算和电子生理数据集的效用。它允许将单一和多片数据集用于假设测试,或者可以使用无标签。 最后,我们证明CEBRA可以用于空间绘图,发现复杂的运动特征,以及从视觉皮质中快速、高度精确地解析自然电影。