Due to the high performance and safety requirements of self-driving applications, the complexity of modern autonomous driving systems (ADS) has been growing, instigating the need for more sophisticated hardware which could add to the energy footprint of the ADS platform. Addressing this, edge computing is poised to encompass self-driving applications, enabling the compute-intensive autonomy-related tasks to be offloaded for processing at compute-capable edge servers. Nonetheless, the intricate hardware architecture of ADS platforms, in addition to the stringent robustness demands, set forth complications for task offloading which are unique to autonomous driving. Hence, we present $ROMANUS$, a methodology for robust and efficient task offloading for modular ADS platforms with multi-sensor processing pipelines. Our methodology entails two phases: (i) the introduction of efficient offloading points along the execution path of the involved deep learning models, and (ii) the implementation of a runtime solution based on Deep Reinforcement Learning to adapt the operating mode according to variations in the perceived road scene complexity, network connectivity, and server load. Experiments on the object detection use case demonstrated that our approach is 14.99% more energy-efficient than pure local execution while achieving a 77.06% reduction in risky behavior from a robust-agnostic offloading baseline.
翻译:由于自行驾驶应用程序的性能和安全要求很高,现代自主驾驶系统(ADS)的复杂性和安全要求越来越高,因此需要更精密的硬件来增加ADS平台的能源足迹。解决这个问题,边缘计算将包含自驾驶应用程序,使计算密集的自主相关任务能够卸下,用于在可计算能力边缘服务器上处理。然而,ADS平台的复杂硬件结构,除了严格的稳健性要求外,还提出了任务卸载的复杂性,这是自主驾驶所独有的。因此,我们提出美元,这是一套强有力和高效地卸载配有多传感器处理管道的模块式ADS平台的方法。我们的方法分为两个阶段:(一) 在相关深层学习模型的执行路径上引入高效的卸载点,以及(二) 实施基于深强化学习的运行时间解决方案,以根据所察觉到的公路场复杂性、网络连通性和服务器负荷的变化调整操作模式。因此,我们对物体探测应用的实验表明,我们的方法是强有力和高效的卸载方式,而本地的降压率为14.99%。