Language models trained on large text corpora encode rich distributional information about real-world environments and action sequences. This information plays a crucial role in current approaches to language processing tasks like question answering and instruction generation. We describe how to leverage language models for *non-linguistic* perception and control tasks. Our approach casts labeling and decision-making as inference in probabilistic graphical models in which language models parameterize prior distributions over labels, decisions and parameters, making it possible to integrate uncertain observations and incomplete background knowledge in a principled way. Applied to semantic segmentation, household navigation, and activity recognition tasks, this approach improves predictions on rare, out-of-distribution, and structurally novel inputs.
翻译:在大型文本公司培训的语言模式中,对关于现实世界环境和行动序列的丰富的分发信息进行了分类。这种信息在目前处理语言处理工作的方法中发挥着关键作用,例如问题回答和教学生成。我们描述了如何利用语言模式来进行非语言的认知和控制任务。我们的方法将标签和决策作为概率性图形模型的推理,在这种模型中,语言模型将先前的分布比作标签、决定和参数,从而有可能以有原则的方式整合不确定的观察和不完整的背景知识。应用于语义分解、家用导航和活动识别任务,这种方法改进了对稀有、分配外和结构上的新投入的预测。