We introduce a new graph parameter called linear upper maximum induced matching width, denoted for a graph $G$ by $lu(G)$. We prove that the smallest size of the \textsc{obdd} for $\varphi$, the monotone 2-\textsc{cnf} corresponding to $G$, is sandwiched between $2^{lu(G)}$ and $n^{O(lu(G))}$. The upper bound is based on a combinatorial statement that might be of an independent interest. We show that the bounds in terms of this parameter are best possible.
翻译:我们引入了一个新的图形参数,称为线性最大引导匹配宽度上限,用美元(G)表示的图形值为$(G)美元。我们证明$(varphie)最小的\ textsc{obd}大小,即单色2-\ textsc{cnf}相当于$G$的单色2-\ textsc{cnf},是2 ⁇ lu(G)}$和$n ⁇ O(G)}美元之间的三明治。上边框基于可能具有独立利益的组合语句。我们证明该参数的界限是最好的。