Deep neural networks excel at image classification, but their performance is far less robust to input perturbations than human perception. In this work we explore whether this shortcoming may be partly addressed by incorporating brain-inspired recurrent dynamics in deep convolutional networks. We take inspiration from a popular framework in neuroscience: 'predictive coding'. At each layer of the hierarchical model, generative feedback 'predicts' (i.e., reconstructs) the pattern of activity in the previous layer. The reconstruction errors are used to iteratively update the network's representations across timesteps, and to optimize the network's feedback weights over the natural image dataset-a form of unsupervised training. We show that implementing this strategy into two popular networks, VGG16 and EfficientNetB0, improves their robustness against various corruptions. We hypothesize that other feedforward networks could similarly benefit from the proposed framework. To promote research in this direction, we provide an open-sourced PyTorch-based package called Predify, which can be used to implement and investigate the impacts of the predictive coding dynamics in any convolutional neural network.
翻译:深心神经网络在图像分类方面非常出色, 但是它们的性能比人类的感知要弱得多。 在这项工作中, 我们探讨这一缺陷是否可以通过将大脑激发的反复动态纳入深演网络来部分解决。 我们从神经科学中流行的框架“ 预知编码 ” 中得到灵感。 在等级模型的每一个层次上, 基因反馈“ 预兆 ” ( 重建) 在上层的活动模式。 重建错误被用来反复更新网络在时间跨步的表达方式, 并优化网络对自然图像数据集的反馈权重, 这是一种不受监督的培训形式。 我们显示, 将这一战略实施到两个流行的网络VGG16 和 高效的NetB0, 提高了它们抵御各种腐败的活力。 我们假设其他进食网络也可以从拟议框架中同样受益。 为了促进这方面的研究, 我们提供了一个开源的基于Predifrify的软件包, 可用于执行和调查任何革命网络的预测性电动动态的影响。