A popular heuristic for improved performance in Generative adversarial networks (GANs) is to use some form of gradient penalty on the discriminator. This gradient penalty was originally motivated by a Wasserstein distance formulation. However, the use of gradient penalty in other GAN formulations is not well motivated. We present a unifying framework of expected margin maximization and show that a wide range of gradient-penalized GANs (e.g., Wasserstein, Standard, Least-Squares, and Hinge GANs) can be derived from this framework. Our results imply that employing gradient penalties induces a large-margin classifier (thus, a large-margin discriminator in GANs). We describe how expected margin maximization helps reduce vanishing gradients at fake (generated) samples, a known problem in GANs. From this framework, we derive a new $L^\infty$ gradient norm penalty with Hinge loss which generally produces equally good (or better) generated output in GANs than $L^2$-norm penalties (based on the Fr\'echet Inception Distance).
翻译:在创用对抗性网络(GANs)中,改进性能的流行理论是,对歧视者使用某种形式的梯度处罚。这种梯度处罚最初是由瓦塞斯坦远距离配方推动的。然而,在其他GAN配方中使用梯度处罚没有很好地激励。我们提出了一个预期差值最大化的统一框架,并表明,从这个框架可以得出一系列广泛的梯度-平化GANs(例如,瓦塞斯坦、标准、最低标准、最低标准以及Hinge GANs)标准处罚。我们的结果表明,使用梯度处罚会产生一个大型海拔分类(因此,在GANs中是一个大边际歧视者 ) 。我们描述了预期差值最大化如何有助于减少假(产生的)样品的消失梯度,这是GANs的一个已知问题。我们从这个框架中获得了一个新的以梯度计值值为基值的梯度标准处罚,其在GANs产生的产出通常比$L ⁇ 2美元-诺姆处罚(基于Fr\'echetch Incepepion距离)产生同样好的(或更好的)。