Artificially designed composite materials consist of microstructures, that exhibit various thermal properties depending on their shapes, such as anisotropic thermal conductivity. One of the representative applications of such composite materials for thermal control is the thermal cloak. This study proposed a topology optimization method based on a level set method for a heat conduction problem to optimally design composite materials that achieve a thermal cloak. The homogenization method was introduced to evaluate its effective thermal conductivity coefficient. Then, we formulated a multiscale topology optimization method for the composite materials in the framework of the homogenization method, where the microstructures were optimized to minimize objective functions defined using the macroscopic temperature field. We presented examples of optimal structures in a two-dimensional problem and discussed the validity of the obtained structures.


翻译:人工设计的复合材料由微型结构组成,这些结构视其形状不同而具有不同的热特性,例如厌养热传导性。这种复合材料在热控制方面的有代表性的应用之一是热斗。这项研究提出了一种基于热导问题定级方法的地形优化方法,以最佳地设计热导复合材料,从而实现热斗。采用了同质化方法来评价其有效的热导系数。然后,我们在同质化方法的框架内为复合材料制定了一种多尺度的地形优化方法,在同质法的框架内优化了微型结构,以尽量减少使用宏观温度场界定的客观功能。我们介绍了二维问题中最佳结构的实例,并讨论了所获得的结构的有效性。</s>

0
下载
关闭预览

相关内容

专知会员服务
25+阅读 · 2021年4月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
专知会员服务
60+阅读 · 2020年3月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
92+阅读 · 2022年8月2日
Arxiv
11+阅读 · 2019年4月15日
VIP会员
相关VIP内容
专知会员服务
25+阅读 · 2021年4月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
专知会员服务
60+阅读 · 2020年3月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员