Previous theory work on multi-objective evolutionary algorithms considers mostly easy problems that are composed of unimodal objectives. This paper takes a first step towards a deeper understanding of how evolutionary algorithms solve multi-modal multi-objective problems. We propose the OneJumpZeroJump problem, a bi-objective problem whose single objectives are isomorphic to the classic jump functions benchmark. We prove that the simple evolutionary multi-objective optimizer (SEMO) cannot compute the full Pareto front. In contrast, for all problem sizes~$n$ and all jump sizes $k \in [4..\frac n2 - 1]$, the global SEMO (GSEMO) covers the Pareto front in $\Theta((n-2k)n^{k})$ iterations in expectation. To improve the performance, we combine the GSEMO with two approaches, a heavy-tailed mutation operator and a stagnation detection strategy, that showed advantages in single-objective multi-modal problems. Runtime improvements of asymptotic order at least $k^{\Omega(k)}$ are shown for both strategies. Our experiments verify the {substantial} runtime gains already for moderate problem sizes. Overall, these results show that the ideas recently developed for single-objective evolutionary algorithms can be effectively employed also in multi-objective optimization.


翻译:以往关于多目标进化算法的理论工作主要认为由单式目标构成的简单问题。 本文迈出了第一步, 更深入地了解进化算法如何解决多式多目标问题。 我们提出“ 一个 JumpZeroJump ” 问题, 这是双目标问题, 其单一目标与典型跳跃函数基准是相形见绌的。 我们证明, 简单的进化多目标优化器( SEMO) 无法计算全Pareto 。 相反, 对所有问题大小~ 美元和所有跳跃大小$k $@4.\ frac n2 - 1] 来说, 全球 SEMO (GSEMO) 问题要更深入了解如何解决多式多式问题。 以$( n-2k) nQ@ kk} 来覆盖Paretotofront 问题。 为了改进业绩, 我们的单式多式多式变异化操作器操作器的运行时间改进了 至少在 $\\\\\Omegan realbalaltialalalalalalal restial restialtical exalbalbaltiquestalbal pal pal pal ress press pres 。 为了最近展示了两个战略都展示了。

0
下载
关闭预览

相关内容

专知会员服务
52+阅读 · 2020年9月7日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
已删除
将门创投
8+阅读 · 2019年3月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年2月16日
Arxiv
0+阅读 · 2021年2月15日
Arxiv
0+阅读 · 2021年2月14日
Arxiv
0+阅读 · 2021年2月12日
Arxiv
0+阅读 · 2021年2月11日
Arxiv
6+阅读 · 2018年11月29日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
已删除
将门创投
8+阅读 · 2019年3月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Arxiv
0+阅读 · 2021年2月16日
Arxiv
0+阅读 · 2021年2月15日
Arxiv
0+阅读 · 2021年2月14日
Arxiv
0+阅读 · 2021年2月12日
Arxiv
0+阅读 · 2021年2月11日
Arxiv
6+阅读 · 2018年11月29日
Top
微信扫码咨询专知VIP会员