We study fundamental point-line covering problems in computational geometry, in which the input is a set $S$ of points in the plane. The first is the Rich Lines problem, which asks for the set of all lines that each covers at least $\lambda$ points from $S$, for a given integer parameter $\lambda \geq 2$; this problem subsumes the 3-Points-on-Line problem and the Exact Fitting problem, which -- the latter -- asks for a line containing the maximum number of points. The second is the NP-hard problem Line Cover, which asks for a set of $k$ lines that cover the points of $S$, for a given parameter $k \in \mathbb{N}$. Both problems have been extensively studied. In particular, the Rich Lines problem is a fundamental problem whose solution serves as a building block for several algorithms in computational geometry. For Rich Lines and Exact Fitting, we present a randomized Monte Carlo algorithm that achieves a lower running time than that of Guibas et al.'s algorithm [Computational Geometry 1996], for a wide range of the parameter $\lambda$. We derive lower-bound results showing that, for $\lambda =\Omega(\sqrt{n \log n})$, the upper bound on the running time of this randomized algorithm matches the lower bound that we derive on the time complexity of Rich Lines in the algebraic computation trees model. For Line Cover, we present two kernelization algorithms: a randomized Monte Carlo algorithm and a deterministic algorithm. Both algorithms improve the running time of existing kernelization algorithms for Line Cover. We derive lower-bound results showing that the running time of the randomized algorithm we present comes close to the lower bound we derive on the time complexity of kernelization algorithms for Line Cover in the algebraic computation trees model.


翻译:我们研究基本点直线, 包括计算几何中的问题, 输入是固定的 $S 。 首先是 Rich Lines 问题, 它要求将每行至少覆盖$S$的所有线数从$S$至少覆盖$lambda 点, 对于给定的整数参数 $\lambda\geq 2 美元; 这个问题会分解三点对线问题和精密适应问题, 后者要求一条包含最大点数的线 。 第二是 NP- 硬问题线封面, 它需要一套 $美元 的线数, 包括美元, 给给给给给定的参数 $k\ mathbda 的值值, 电算的解算值 。 特别是, Richlines 问题是一个根本问题, 它的解算方法可以作为计算几步算法的构建块。 对于 Richlines 和Exact Fittingtingting, 我们提出一个随机化的蒙特卡洛 算法, 在 基巴 和 的宽线运行时间里程中, 正在运行的 美元对 的 Ralmax 。

0
下载
关闭预览

相关内容

最新《几何深度学习》教程,100页ppt,Geometric Deep Learning
专知会员服务
100+阅读 · 2020年7月16日
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
108+阅读 · 2020年6月10日
【经典书】贝叶斯编程,378页pdf,Bayesian Programming
专知会员服务
247+阅读 · 2020年5月18日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
110+阅读 · 2020年5月15日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
已删除
将门创投
5+阅读 · 2020年3月2日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
VIP会员
相关资讯
已删除
将门创投
5+阅读 · 2020年3月2日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员