This study addresses critical gaps in automated lymphoma segmentation from PET/CT images, focusing on issues often overlooked in existing literature. While deep learning has been applied for lymphoma lesion segmentation, few studies incorporate out-of-distribution testing, raising concerns about model generalizability across diverse imaging conditions and patient populations. We highlight the need to compare model performance with expert human annotators, including intra- and inter-observer variability, to understand task difficulty better. Most approaches focus on overall segmentation accuracy but overlook lesion-specific metrics important for precise lesion detection and disease quantification.To address these gaps, we propose a clinically-relevant framework for evaluating deep neural networks. Using this lesion-specific evaluation, we assess the performance of four deep segmentation networks (ResUNet, SegResNet, DynUNet, and SwinUNETR) across 611 cases from multi-institutional datasets, covering various lymphoma subtypes and lesion characteristics. Beyond standard metrics like the Dice similarity coefficient (DSC), we evaluate clinical lesion measures and their prediction errors. We also introduce detection criteria for lesion localization and propose a new detection Criterion 3 based on metabolic characteristics. We show that networks perform better on large, intense lesions with higher metabolic activity.Finally, we compare network performance to expert human observers via intra- and inter-observer variability analyses, demonstrating that network errors closely resemble those made by experts. Some small, faint lesions remain challenging for both humans and networks. This study aims to improve automated lesion segmentation's clinical relevance, supporting better treatment decisions for lymphoma patients. The code is available at: https://github.com/microsoft/lymphoma-segmentation-dnn


翻译:暂无翻译

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
专知会员服务
54+阅读 · 2020年3月16日
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
29+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
论文浅尝 | 利用 RNN 和 CNN 构建基于 FreeBase 的问答系统
开放知识图谱
11+阅读 · 2018年4月25日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
10+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
相关基金
国家自然科学基金
10+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员