Commonsense Knowledge Base (CSKB) Population aims at reasoning over unseen entities and assertions on CSKBs, and is an important yet hard commonsense reasoning task. One challenge is that it requires out-of-domain generalization ability as the source CSKB for training is of a relatively smaller scale (1M) while the whole candidate space for population is way larger (200M). We propose PseudoReasoner, a semi-supervised learning framework for CSKB population that uses a teacher model pre-trained on CSKBs to provide pseudo labels on the unlabeled candidate dataset for a student model to learn from. The teacher can be a generative model rather than restricted to discriminative models as previous works. In addition, we design a new filtering procedure for pseudo labels based on influence function and the student model's prediction to further improve the performance. The framework can improve the backbone model KG-BERT (RoBERTa-large) by 3.3 points on the overall performance and especially, 5.3 points on the out-of-domain performance, and achieves the state-of-the-art. Codes and data are available at https://github.com/HKUST-KnowComp/PseudoReasoner.
翻译:常识知识库(CSKB) 人口(CSKB) 人口(CSKB) 的目标是对隐形实体进行推理,对CSKB进行论证,这是一项重要但又困难的常识推理任务。 一项挑战是,它需要外表的概括能力,因为CSKB的训练来源规模较小(1M),而整个候选人口空间则大得多(200M)。我们提议PseudoReasoner,这是CSKB人口半监督的学习框架,它使用CSKB的教师模型预先培训,为学生学习模式提供未贴标签的候选人数据集的假标签。教师可以是一个基因模型,而不是像以前的工作那样局限于歧视模式。 此外,我们设计了一个新的假标签过滤程序,根据影响功能和学生模型预测进一步改进业绩。 该框架可以改进主干模型KG-BERT(ROBTA大) 的总体业绩,特别是5.3点显示校外表现的5.3点,并可在http-HSUP/ROG/ROFES/RODAR 数据。