We introduce extended Gaussian distributions as a precise and principled way of combining Gaussian probability uninformative priors, which indicate complete absence of information. To give an extended Gaussian distribution on a finite-dimensional vector space $X$ is to give a subspace $D$, along which no information is known, together with a Gaussian distribution on the quotient $X/D$. We show that the class of extended Gaussians remains closed under taking conditional distributions. We then introduce decorated linear maps and relations as a general framework to combine probability with nondeterminism on vector spaces, which includes extended Gaussians as a special case. This enables us to apply methods from categorical logic to probability, and make connections to the semantics of probabilistic programs with exact conditioning.
翻译:我们采用扩大的高斯分配法,作为将高斯概率非信息化前题合并的精确和原则性方法,这表明完全没有信息。给有限维向载体空间高斯的扩大分布,美元就是给一个子空间$D(在其中没有信息的情况下)一个小空间$D(美元),同时用商数$X/D(美元)的戈斯分配法。我们显示,延长的高斯人类别在有条件分布下仍然关闭。我们随后引入了装饰的线性地图和关系,作为将矢量空间概率和非确定性结合起来的一般框架,其中包括扩展高斯人作为特例。这使我们能够应用从绝对逻辑到概率的方法,并与精确调节的概率方案词义连接。