Deep Neural Networks (DNNs) are being adopted as components in software systems. Creating and specializing DNNs from scratch has grown increasingly difficult as state-of-the-art architectures grow more complex. Following the path of traditional software engineering, machine learning engineers have begun to reuse large-scale pre-trained models (PTMs) and fine-tune these models for downstream tasks. Prior works have studied reuse practices for traditional software packages to guide software engineers towards better package maintenance and dependency management. We lack a similar foundation of knowledge to guide behaviors in pre-trained model ecosystems. In this work, we present the first empirical investigation of PTM reuse. We interviewed 12 practitioners from the most popular PTM ecosystem, Hugging Face, to learn the practices and challenges of PTM reuse. From this data, we model the decision-making process for PTM reuse. Based on the identified practices, we describe useful attributes for model reuse, including provenance, reproducibility, and portability. Three challenges for PTM reuse are missing attributes, discrepancies between claimed and actual performance, and model risks. We substantiate these identified challenges with systematic measurements in the Hugging Face ecosystem. Our work informs future directions on optimizing deep learning ecosystems by automated measuring useful attributes and potential attacks, and envision future research on infrastructure and standardization for model registries.
翻译:深心网络(DNN)正在被采纳为软件系统的组成部分。从零开始创建和专门设计DNN越来越困难,因为最先进的建筑结构越来越复杂。根据传统软件工程学的路径,机器学习工程师开始重新使用大规模预培训模型,并对这些模型进行微调,用于下游任务。以前的工作研究过传统软件包的再利用做法,以指导软件工程师改进软件包的维护和依赖性管理。我们缺乏类似的知识基础来指导经过培训的模范生态系统的行为。我们在此工作中介绍了对PTM再利用的第一次实证调查。我们采访了来自最受欢迎的PTM生态系统、Huging Face的12名从业者,以学习PTM再利用的做法和挑战。我们从这些数据中为PTM再利用的决策进程建模。我们根据已查明的做法,介绍了模式再利用的有用属性,包括证明、可复制性和可移植性。PTM再利用的三种挑战都缺乏属性,声称的和实际的绩效之间的差异,以及模型风险。我们用系统测量了这些挑战,用系统测量了对Hugg 的生态系统进行标准化研究,并改进了我们未来生态系统研究的标志。</s>