The Spreading Projection Algorithm for Rapid K-space samplING, or SPARKLING, is an optimization-driven method that has been recently introduced for accelerated 2D T2*-w MRI using compressed sensing. It has then been extended to address 3D imaging using either stacks of 2D sampling patterns or a local 3D strategy that optimizes a single sampling trajectory at a time. 2D SPARKLING actually performs variable density sampling (VDS) along a prescribed target density while maximizing sampling efficiency and meeting the gradient-based hardware constraints. However, 3D SPARKLING has remained limited in terms of acceleration factors along the third dimension if one wants to preserve a peaky point spread function (PSF) and thus good image quality.In this paper, in order to achieve higher acceleration factors in 3D imaging while preserving image quality, we propose a new efficient algorithm that performs optimization on full 3D SPARKLING. The proposed implementation based on fast multipole methods (FMM) allows us to design sampling patterns with up to 10^7 k-space samples, thus opening the door to 3D VDS. We compare multi-CPU and GPU implementations and demonstrate that the latter is optimal for 3D imaging in the high-resolution acquisition regime (600$\mu$m isotropic). Finally, we show that this novel optimization for full 3D SPARKLING outperforms stacking strategies or 3D twisted projection imaging through retrospective and prospective studies on NIST phantom and in vivo brain scans at 3 Tesla. Overall the proposed method allows for 2.5-3.75x shorter scan times compared to GRAPPA-4 parallel imaging acquisition at 3 Tesla without compromising image quality.


翻译:快速 K- 空间光采的扩展投影度值, 即 STARKLING, 是一种优化驱动方法, 使用压缩感应器, 用于加速 2D T2*- w MRI 的加速 2D T2*- w MRI 最近采用了优化驱动法。 然后, 该方法被扩展, 用于使用堆叠 2D 取样模式或本地 3D 战略, 以优化一次的单一取样轨迹。 2D SPARKLINE 实际按照规定的目标密度进行可变密度取样(VDS), 同时最大限度地提高采样效率和满足基于梯度的硬件限制。 然而, 3D SPRARKLING, 在加速因素方面, 3D 3D 的加速因素方面, 在加速点扩散功能上, 3DSFS 上, 直径对3MLA 进行扫描, 3MLA 进行高分辨率测试。

0
下载
关闭预览

相关内容

神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
70+阅读 · 2020年8月2日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
8+阅读 · 2018年12月28日
【泡泡一分钟】点云到网格的回归算法实现
泡泡机器人SLAM
8+阅读 · 2018年11月23日
已删除
将门创投
3+阅读 · 2018年8月21日
如何评测AI系统?
StarryHeavensAbove
4+阅读 · 2018年5月19日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
深度学习医学图像分析文献集
机器学习研究会
17+阅读 · 2017年10月13日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年10月5日
Arxiv
0+阅读 · 2021年10月4日
Arxiv
5+阅读 · 2018年1月17日
VIP会员
相关VIP内容
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
70+阅读 · 2020年8月2日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
相关资讯
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
8+阅读 · 2018年12月28日
【泡泡一分钟】点云到网格的回归算法实现
泡泡机器人SLAM
8+阅读 · 2018年11月23日
已删除
将门创投
3+阅读 · 2018年8月21日
如何评测AI系统?
StarryHeavensAbove
4+阅读 · 2018年5月19日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
深度学习医学图像分析文献集
机器学习研究会
17+阅读 · 2017年10月13日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员