The Bayesian analysis of infectious disease surveillance data from multiple locations typically involves building and fitting a spatio-temporal model of how the disease spreads in the structured population. Here we present new generally applicable methodology to perform this task. We introduce a parsimonious representation of seasonality and a biologically informed specification of the outbreak component to avoid parameter identifiability issues. We develop a computationally efficient Bayesian inference methodology for the proposed models, including techniques to detect outbreaks by computing marginal posterior probabilities at each spatial location and time point. We show that it is possible to efficiently integrate out the discrete parameters associated with outbreak states, enabling the use of dynamic Hamiltonian Monte Carlo (HMC) as a complementary alternative to a hybrid Markov chain Monte Carlo (MCMC) algorithm. Furthermore, we introduce a robust Bayesian model comparison framework based on importance sampling to approximate model evidence in high-dimensional space. The performance of our methodology is validated through systematic simulation studies, where simulated outbreaks were successfully detected, and our model comparison strategy demonstrates strong reliability. We also apply our new methodology to monthly incidence data on invasive meningococcal disease from 28 European countries. The results highlight outbreaks across multiple countries and months, with model comparison analysis showing that the new specification outperforms previous approaches. The accompanying software is freely available as a R package at https://github.com/Matthewadeoye/DetectOutbreaks.
翻译:暂无翻译